Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Cyclic Quad. and Intersections
Thelink_20   11
N 23 minutes ago by americancheeseburger4281
Source: My Problem
Let $ABCD$ be a quadrilateral inscribed in a circle $\Gamma$. Let $AC\cap BD=E$, $AB\cap CD=F$, $(AEF)\cap\Gamma=X$, $(BEF)\cap\Gamma=Y$, $(CEF)\cap\Gamma=Z$, $(DEF)\cap\Gamma=W$, $XZ\cap YW=M$, $XY\cap ZW=N$. Prove that $MN$ lies over $EF$.
11 replies
Thelink_20
Oct 29, 2024
americancheeseburger4281
23 minutes ago
Painting Beads on Necklace
amuthup   46
N an hour ago by quantam13
Source: 2021 ISL C2
Let $n\ge 3$ be a fixed integer. There are $m\ge n+1$ beads on a circular necklace. You wish to paint the beads using $n$ colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of $m$ for which this task is $\emph{not}$ possible.

Carl Schildkraut, USA
46 replies
amuthup
Jul 12, 2022
quantam13
an hour ago
Iran geometry
Dadgarnia   38
N an hour ago by cursed_tangent1434
Source: Iranian TST 2018, first exam day 2, problem 4
Let $ABC$ be a triangle ($\angle A\neq 90^\circ$). $BE,CF$ are the altitudes of the triangle. The bisector of $\angle A$ intersects $EF,BC$ at $M,N$. Let $P$ be a point such that $MP\perp EF$ and $NP\perp BC$. Prove that $AP$ passes through the midpoint of $BC$.

Proposed by Iman Maghsoudi, Hooman Fattahi
38 replies
Dadgarnia
Apr 8, 2018
cursed_tangent1434
an hour ago
hard problem (to me)
kjhgyuio   2
N an hour ago by kjhgyuio
........
2 replies
kjhgyuio
Apr 19, 2025
kjhgyuio
an hour ago
PE is bisector of BPC
goldeneagle   44
N an hour ago by cursed_tangent1434
Source: Iran TST 2012 -first day- problem 2
Consider $\omega$ is circumcircle of an acute triangle $ABC$. $D$ is midpoint of arc $BAC$ and $I$ is incenter of triangle $ABC$. Let $DI$ intersect $BC$ in $E$ and $\omega$ for second time in $F$. Let $P$ be a point on line $AF$ such that $PE$ is parallel to $AI$. Prove that $PE$ is bisector of angle $BPC$.

Proposed by Mr.Etesami
44 replies
goldeneagle
Apr 23, 2012
cursed_tangent1434
an hour ago
find question
mathematical-forest   9
N an hour ago by JARP091
Are there any contest questions that seem simple but are actually difficult? :-D
9 replies
mathematical-forest
May 29, 2025
JARP091
an hour ago
Interesting inequality
sqing   1
N an hour ago by Zok_G8D
Source: Own
Let $  a, b,c>0,b+c\geq 3a$. Prove that
$$ \sqrt{\frac{a}{b+c-a}}-\frac{ 2a^2-b^2-c^2}{(a+b)(a+c)}\geq \frac{2}{5}+\frac{1}{\sqrt 2}$$$$ \frac{3}{2}\sqrt{\frac{a}{b+c-a}}-\frac{ 2a^2-b^2-c^2}{(a+b)(a+c)}\geq \frac{2}{5}+\frac{3}{2\sqrt 2}$$
1 reply
sqing
Yesterday at 2:49 AM
Zok_G8D
an hour ago
Basic ideas in junior diophantine equations
Maths_VC   6
N 2 hours ago by Adywastaken
Source: Serbia JBMO TST 2025, Problem 3
Determine all positive integers $a, b$ and $c$ such that
$2$ $\cdot$ $10^a + 5^b = 2025^c$
6 replies
Maths_VC
May 27, 2025
Adywastaken
2 hours ago
$p|f(m+n) \iff p|f(m) + f(n)$ (IMO Shortlist 2007, N5)
orl   49
N 2 hours ago by blueprimes
Source: IMO Shortlist 2007, N5, AIMO 2008, TST 3, P3
Find all surjective functions $ f: \mathbb{N} \to \mathbb{N}$ such that for every $ m,n \in \mathbb{N}$ and every prime $ p,$ the number $ f(m + n)$ is divisible by $ p$ if and only if $ f(m) + f(n)$ is divisible by $ p$.

Author: Mohsen Jamaali and Nima Ahmadi Pour Anari, Iran
49 replies
orl
Jul 13, 2008
blueprimes
2 hours ago
Inequality in triangle
Nguyenhuyen_AG   2
N 2 hours ago by JARP091
Let $a,b,c$ be the lengths of the sides of a triangle. Prove that
\[\frac{1}{(a-4b)^2}+\frac{1}{(b-4c)^2}+\frac{1}{(c-4a)^2} \geqslant \frac{1}{ab+bc+ca}.\]
2 replies
Nguyenhuyen_AG
5 hours ago
JARP091
2 hours ago
Interesting inequality
sqing   2
N 2 hours ago by sqing
Source: Own
Let $ a,b,c\geq  0 , a^2+b^2+c^2 =3.$ Prove that
$$ a^4+ b^4+c^4+6abc\leq9$$$$ a^3+ b^3+  c^3+3( \sqrt{3}-1)abc\leq 3\sqrt 3$$
2 replies
sqing
Today at 2:54 AM
sqing
2 hours ago
Strange Geometry
Itoz   2
N Apr 21, 2025 by hectorraul
Source: Own
Given a fixed circle $\omega$ with its center $O$. There are two fixed points $B, C$ and one moving point $A$ on $\omega$. The midpoint of the line segment $BC$ is $M$. $R$ is a fixed point on $\omega$. Line $AO$ intersects$\odot(AMR)$ at $P(\ne A)$, and line $BP$ intersects $\odot(BOC)$ at $Q(\ne B)$.

Find all the fixed points $R$ such that $\omega$ is always tangent to $\odot (OPQ)$ when $A$ varies.
Hint
2 replies
Itoz
Apr 20, 2025
hectorraul
Apr 21, 2025
Strange Geometry
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Itoz
71 posts
#1
Y by
Given a fixed circle $\omega$ with its center $O$. There are two fixed points $B, C$ and one moving point $A$ on $\omega$. The midpoint of the line segment $BC$ is $M$. $R$ is a fixed point on $\omega$. Line $AO$ intersects$\odot(AMR)$ at $P(\ne A)$, and line $BP$ intersects $\odot(BOC)$ at $Q(\ne B)$.

Find all the fixed points $R$ such that $\omega$ is always tangent to $\odot (OPQ)$ when $A$ varies.
Hint
Attachments:
This post has been edited 2 times. Last edited by Itoz, Apr 20, 2025, 2:02 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hukilau17
291 posts
#2 • 1 Y
Y by Pengu14
Complex bash with $\omega$ as the unit circle, so that
$$|a|=|b|=|c|=|r|=1$$$$o = 0$$$$m = \frac{b+c}2$$Let $U$ be the circumcenter of $\triangle AMR$, so that
$$u = \frac{ar(m\overline{m}-1)}{m-a-r+ar\overline{m}} = \frac{ar(b-c)^2}{2(abr+acr-2abc-2bcr+b^2c+bc^2)}$$and
\begin{align*}
p &= 2\left[\frac{a + (-a) + u - a(-a)\overline{u}}2\right] - a \\
&= u + a^2\overline{u} - a \\
&= \frac{ar(b-c)^2}{2(abr+acr-2abc-2bcr+b^2c+bc^2)} + \frac{a^2(b-c)^2}{2(abr+acr-2abc-2bcr+b^2c+bc^2)} - a \\
&= \frac{ar(b-c)^2 + a^2(b-c)^2 - 2a(abr+acr-2abc-2bcr+b^2c+bc^2)}{2(abr+acr-2abc-2bcr+b^2c+bc^2)} \\
&= \frac{a(ab^2+2abc+ac^2-2abr-2acr-2b^2c-2bc^2+b^2r+2bcr+c^2r)}{2(abr+acr-2abc-2bcr+b^2c+bc^2)} \\
&= \frac{a(b+c)(ab+ac-2ar-2bc+br+cr)}{2(abr+acr-2abc-2bcr+b^2c+bc^2)}
\end{align*}Then we have
$$p-b = \frac{a^2b^2+2a^2bc+a^2c^2-2a^2br-2a^2cr+2ab^2c-2abc^2-ab^2r+ac^2r+4b^2cr-2b^3c-2b^2c^2}{2(abr+acr-2abc-2bcr+b^2c+bc^2)}$$and so, letting line $BP$ intersect $\omega$ again at $T$, we have
$$t = \frac{b-p}{b\overline{p}-1} = -\frac{p-b}{b(\overline{p}-\overline{b})} = \frac{a(a^2b^2+2a^2bc+a^2c^2-2a^2br-2a^2cr+2ab^2c-2abc^2-ab^2r+ac^2r+4b^2cr-2b^3c-2b^2c^2)}{2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r}$$Also let $V$ be the circumcenter of $\triangle BOC$, so that
$$v = \frac{bc}{b+c}$$Then
\begin{align*}
q &= 2\left(\frac{b+t+v-bt\overline{v}}2\right) - b \\
&= t + v - bt\overline{v} \\
&= t + \frac{bc}{b+c} - \frac{bt}{b+c} \\
&= \frac{c(b+t)}{b+c} \\
&= \frac{c(a^3b^2+2a^3bc+a^3c^2-2a^3br-2a^3cr-2a^2b^2c-2a^2bc^2+a^2b^2r+2a^2bcr+a^2c^2r-ab^4+2ab^2cr-2ab^3c+2ab^3r-ab^2c^2+2b^4c+2b^3c^2-b^4r-2b^3cr-b^2c^2r)}{(b+c)(2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r)} \\
&= \frac{c(a^3b+a^3c-2a^3r-2a^2bc+a^2br+a^2cr-ab^3-ab^2c+2ab^2r+2b^3c-b^3r-b^2cr)}{2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r} \\
&= \frac{c(a+b)(a-b)(ab+ac-2ar-2bc+br+cr)}{2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r}
\end{align*}Now let $X$ denote the circumcenter of $\triangle OPQ$, so that
$$x = \frac{pq(\overline{p}-\overline{q})}{\overline{p}q-p\overline{q}}$$Now we compute
\begin{align*}
\overline{p} &= \frac{(b+c)(ab+ac-2ar-2bc+br+cr)}{2a(abr+acr-2abc-2bcr+b^2c+bc^2)} = \frac{p}{a^2} \\
\overline{q} &= \frac{(a+b)(a-b)(ab+ac-2ar-2bc+br+cr)}{a(a^2b^2+2a^2bc+a^2c^2-2a^2br-2a^2cr+2ab^2c-2abc^2-ab^2r+ac^2r+4b^2cr-2b^3c-2b^2c^2)} = \frac{q}{ct}
\end{align*}Then
$$x = \frac{pq\left(\frac{p}{a^2}-\frac{q}{ct}\right)}{\frac{pq}{a^2}-\frac{pq}{ct}} = \frac{a^2q-ctp}{a^2-ct}$$Now
\begin{align*}
a^2q - ctp &= \frac{a^2c(a+b)(a-b)(ab+ac-2ar-2bc+br+cr)}{2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r} - \frac{a^2c(b+c)(ab+ac-2ar-2bc+br+cr)(a^2b^2+2a^2bc+a^2c^2-2a^2br-2a^2cr+2ab^2c-2abc^2-ab^2r+ac^2r+4b^2cr-2b^3c-2b^2c^2)}{2(abr+acr-2abc-2bcr+b^2c+bc^2)(2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r)} \\
&= \frac{a^2c(ab+ac-2ar-2bc+br+cr)\left[2(a^2-b^2)(abr+acr-2abc-2bcr+b^2c+bc^2) - (b+c)(a^2b^2+2a^2bc+a^2c^2-2a^2br-2a^2cr+2ab^2c-2abc^2-ab^2r+ac^2r+4b^2cr-2b^3c-2b^2c^2)\right]}{2(abr+acr-2abc-2bcr+b^2c+bc^2)(2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r)} \\
&= \frac{a^2c(ab+ac-2ar-2bc+br+cr)(2a^3br+2a^3cr-4a^3bc+2a^2b^2r+2a^2c^2r-a^2b^3-a^2b^2c-a^2bc^2-a^2c^3-ab^3r-ab^2cr-abc^2r-ac^3r+2ab^3c+2abc^3-4b^2c^2r+2b^3c^2+2b^2c^3)}{2(abr+acr-2abc-2bcr+b^2c+bc^2)(2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r)}
\end{align*}and
\begin{align*}
a^2-ct &= a^2 - \frac{ac(a^2b^2+2a^2bc+a^2c^2-2a^2br-2a^2cr+2ab^2c-2abc^2-ab^2r+ac^2r+4b^2cr-2b^3c-2b^2c^2)}{2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r} \\
&= \frac{a(2a^3br+2a^3cr-4a^3bc+2a^2b^2r+2a^2c^2r-a^2b^3-a^2b^2c-a^2bc^2-a^2c^3-ab^3r-ab^2cr-abc^2r-ac^3r+2ab^3c+2abc^3-4b^2c^2r+2b^3c^2+2b^2c^3)}{2a^2br+2a^2cr-4a^2bc-ab^3+abc^2+2ab^2r-2abcr+2b^3c+2b^2c^2-b^3r-2b^2cr-bc^2r}
\end{align*}Thus we have a huge amount of cancellation, and what remains is
$$x = \frac{ac(ab+ac-2ar-2bc+br+cr)}{2(abr+acr-2abc-2bcr+b^2c+bc^2)}$$Now since the circumcircle of $\triangle OPQ$ passes through $O$, it is tangent to $\omega$ if and only if $|x| = \frac12$, or equivalently if
$$|ab+ac-2ar-2bc+br+cr| = |abr+acr-2abc-2bcr+b^2c+bc^2|$$$$|b+c-2r|\left|a - \frac{2bc-br-cr}{b+c-2r}\right| = |br+cr-2bc|\left|a - \frac{bc(b+c-2r)}{2bc-br-cr}\right|$$Since $|b+c-2r| = |br+cr-2bc|$, and since this is nonzero because $r\neq \frac{b+c}2$ because $M$ lies inside $\omega$, we cancel it out to see that $|x| = \frac12$ if and only if
$$\left|a - \frac{2bc-br-cr}{b+c-2r}\right| = \left|a - \frac{bc(b+c-2r)}{2bc-br-cr}\right|$$That is, as $a$ varies on the unit circle, $a$ needs to be equidistant from both of these points. But if the two points are distinct, then their perpendicular bisector intersects the unit circle in at most two points. So the only way for this to work is if those two points are the same point -- that is,
$$\frac{2bc-br-cr}{b+c-2r} = \frac{bc(b+c-2r)}{2bc-br-cr}$$$$(2bc-br-cr)^2 = bc(b+c-2r)^2$$$$4b^2c^2 - 4bcr(b+c) + r^2(b+c)^2 = bc(b+c)^2 - 4bcr(b+c) + 4bcr^2$$$$r^2(b-c)^2 = bc(b-c)^2$$$$r^2 = bc$$and so $R$ is the midpoint of one of the two arcs $BC$ on $\omega$. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hectorraul
363 posts
#3
Y by
Suppose that $R$ is not on the perpendicular bisector of $BC$ take $A$ as the reflection of $R$ on this line. Let $N$ be the midpoint of arc $BRC$ and let $ML$ be a diameter of $(RAPM)$. Clearly $L$ is outside $\omega$.

By power of point

\[
OP = \frac{OL\cdot OM}{OR}
\]let $d$ be the diameter of $(OPQ)$, by sine law
\[
d =  \frac{OP}{sin(\angle OQP)} = \frac{OP}{sin(\angle OCB)} = \frac{OP}{\frac{OM}{OC}} = \frac{OP\cdot OC}{OM}
\]
Combinig all we get
\[
d = \frac{\frac{OL\cdot OM}{OR}\cdot OC}{OM} = OL > ON.
\]
this means $(OPQ)$ intersects $\omega$ twice. Same computation shows that $R$ being the midpoint of both arcs determined by $BC$ works.
Z K Y
N Quick Reply
G
H
=
a