Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Interesting problem from a friend
v4913   11
N an hour ago by YaoAOPS
Source: I'm not sure...
Let the incircle $(I)$ of $\triangle{ABC}$ touch $BC$ at $D$, $ID \cap (I) = K$, let $\ell$ denote the line tangent to $(I)$ through $K$. Define $E, F \in \ell$ such that $\angle{EIF} = 90^{\circ}, EI, FI \cap (AEF) = E', F'$. Prove that the circumcenter $O$ of $\triangle{ABC}$ lies on $E'F'$.
11 replies
v4913
Nov 25, 2023
YaoAOPS
an hour ago
Curious inequality
produit   2
N an hour ago by RainbowNeos
Positive real numbers x_1, x_2, . . . x_n satisfy x_1 + x_2 + . . . + x_n = 1.
Prove that
1/(1 −√x_1)+1/(1 −√x_2)+ . . . +1/(1 −√x_n)⩾ n + 4.
2 replies
produit
May 10, 2025
RainbowNeos
an hour ago
Inspired by an old problem
RainbowNeos   0
an hour ago
Given $n\geq 3$ and $a_i \geq 0, i=1,2,...,n$. Show that
\[\sum_{i=1}^n (a_i-a_{i+1})^3\leq \frac{1}{2\sqrt{3}} (\sum_{i=1}^n a_i )^3,\]where $a_{n+1}=a_1$.
0 replies
RainbowNeos
an hour ago
0 replies
Random walk
EthanWYX2009   3
N 2 hours ago by maromex
As shown in the graph, an ant starts from $4$ and walks randomly. The probability of any point reaching all adjacent points is equal. Find the probability of the ant reaching $1$ without passing through $6.$
3 replies
EthanWYX2009
Yesterday at 9:58 AM
maromex
2 hours ago
Diophantine
TheUltimate123   32
N 3 hours ago by Kempu33334
Source: CJMO 2023/1 (https://aops.com/community/c594864h3031323p27271877)
Find all triples of positive integers \((a,b,p)\) with \(p\) prime and \[a^p+b^p=p!.\]
Proposed by IndoMathXdZ
32 replies
TheUltimate123
Mar 29, 2023
Kempu33334
3 hours ago
Parallel lines in incircle configuration
GeorgeRP   4
N 3 hours ago by VicKmath7
Source: Bulgaria IMO TST 2025 P1
Let $I$ be the incenter of triangle $\triangle ABC$. Let $H_A$, $H_B$, and $H_C$ be the orthocenters of triangles $\triangle BCI$, $\triangle ACI$, and $\triangle ABI$, respectively. Prove that the lines through $H_A$, $H_B$, and $H_C$, parallel to $AI$, $BI$, and $CI$, respectively, are concurrent.
4 replies
GeorgeRP
May 14, 2025
VicKmath7
3 hours ago
Geometry
shactal   1
N 3 hours ago by ricarlos
Two intersecting circles $C_1$ and $C_2$ have a common tangent that meets $C_1$ in $P$ and $C_2$ in $Q$. The two circles intersect at $M$ and $N$ where $N$ is closer to $PQ$ than $M$ . Line $PN$ meets circle $C_2$ a second time in $R$. Prove that $MQ$ bisects angle $\widehat{PMR}$.
1 reply
shactal
Yesterday at 3:04 PM
ricarlos
3 hours ago
IMO ShortList 2001, combinatorics problem 6
orl   15
N 3 hours ago by awesomeming327.
Source: IMO ShortList 2001, combinatorics problem 6
For a positive integer $n$ define a sequence of zeros and ones to be balanced if it contains $n$ zeros and $n$ ones. Two balanced sequences $a$ and $b$ are neighbors if you can move one of the $2n$ symbols of $a$ to another position to form $b$. For instance, when $n = 4$, the balanced sequences $01101001$ and $00110101$ are neighbors because the third (or fourth) zero in the first sequence can be moved to the first or second position to form the second sequence. Prove that there is a set $S$ of at most $\frac{1}{n+1} \binom{2n}{n}$ balanced sequences such that every balanced sequence is equal to or is a neighbor of at least one sequence in $S$.
15 replies
orl
Sep 30, 2004
awesomeming327.
3 hours ago
Number Theory Chain!
JetFire008   64
N 4 hours ago by Primeniyazidayi
I will post a question and someone has to answer it. Then they have to post a question and someone else will answer it and so on. We can only post questions related to Number Theory and each problem should be more difficult than the previous. Let's start!

Question 1
64 replies
JetFire008
Apr 7, 2025
Primeniyazidayi
4 hours ago
Serbian selection contest for the IMO 2025 - P1
OgnjenTesic   3
N 4 hours ago by MR.1
Source: Serbian selection contest for the IMO 2025
Let \( p \geq 7 \) be a prime number and \( m \in \mathbb{N} \). Prove that
\[\left| p^m - (p - 2)! \right| > p^2.\]Proposed by Miloš Milićev
3 replies
OgnjenTesic
Thursday at 4:01 PM
MR.1
4 hours ago
Nice "if and only if" function problem
ICE_CNME_4   0
5 hours ago
Let $f : [0, \infty) \to [0, \infty)$, $f(x) = \dfrac{ax + b}{cx + d}$, with $a, d \in (0, \infty)$, $b, c \in [0, \infty)$. Prove that there exists $n \in \mathbb{N}^*$ such that for every $x \geq 0$
\[
f_n(x) = \frac{x}{1 + nx}, \quad \text{if and only if } f(x) = \frac{x}{1 + x}, \quad \forall x \geq 0.
\](For $n \in \mathbb{N}^*$ and $x \geq 0$, the notation $f_n(x)$ represents $\underbrace{(f \circ f \circ \dots \circ f)}_{n \text{ times}}(x)$. )

Please do it at 9th grade level. Thank you!
0 replies
ICE_CNME_4
5 hours ago
0 replies
n-gon function
ehsan2004   10
N Apr 4, 2025 by Zany9998
Source: Romanian IMO Team Selection Test TST 1996, problem 1
Let $ f: \mathbb{R}^2 \rightarrow \mathbb{R} $ be a function such that for every regular $ n $-gon $ A_1A_2 \ldots A_n $ we have $ f(A_1)+f(A_2)+\cdots +f(A_n)=0 $. Prove that $ f(x)=0 $ for all reals $ x $.
10 replies
ehsan2004
Sep 13, 2005
Zany9998
Apr 4, 2025
n-gon function
G H J
G H BBookmark kLocked kLocked NReply
Source: Romanian IMO Team Selection Test TST 1996, problem 1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ehsan2004
2238 posts
#1 • 3 Y
Y by Adventure10, centslordm, Mango247
Let $ f: \mathbb{R}^2 \rightarrow \mathbb{R} $ be a function such that for every regular $ n $-gon $ A_1A_2 \ldots A_n $ we have $ f(A_1)+f(A_2)+\cdots +f(A_n)=0 $. Prove that $ f(x)=0 $ for all reals $ x $.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
perfect_radio
2607 posts
#2 • 2 Y
Y by Adventure10, Mango247
ehsan2004 wrote:
Prove that $f(x)=0$ for all reals $x$.

You wanted to say "$f(A)=0$ for all points $A$", right?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ehsan2004
2238 posts
#3 • 2 Y
Y by Adventure10, Mango247
perfect_radio wrote:
ehsan2004 wrote:
Prove that $f(x)=0$ for all reals $x$.

You wanted to say "$f(A)=0$ for all points $A$", right?

excuse me, my meant was $f(x)\equiv 0$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
perfect_radio
2607 posts
#4 • 2 Y
Y by Adventure10, Mango247
Take $A \neq B$. Let $\ell$ be the perpendicular bisector of $AB$. Construct a rhombus $ACBD$, with $C,D \in \ell$ and $\measuredangle DAC = \measuredangle DBC = \dfrac{\pi}{3}$. This yields $f(A)+f(C)+f(D)=0=f(B)+f(C)+f(D)$, so $f(A)=f(B)=t$, $\forall A \neq B$.

Therefore $nt=0$, so $t=0$.

Have I done something wrong? It looks too good to be true :blush: (because I used the condition given only for $n=3$)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
enescu
741 posts
#5 • 2 Y
Y by Adventure10, Mango247
Actually, $n$ is fixed in the original statement.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
perfect_radio
2607 posts
#6 • 2 Y
Y by Adventure10, Mango247
enescu wrote:
Actually, $n$ is fixed in the original statement.
Oops... sorry :( . do you know the solution for $n \geq 4$?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
enescu
741 posts
#7 • 7 Y
Y by Batominovski, wateringanddrowned, Adventure10, Upwgs_2008, Mango247, and 2 other users
Yes. Let $A$ be an arbitrary point. Consider a regular $n-$gon $AA_{1}A_{2}\ldots A_{n-1}.$ Let $k$ be an integer, $0\leq k\leq n-1.$ A rotation with center $A$ of angle $\dfrac{2k\pi}{n}$ sends the polygon $AA_{1}A_{2}\ldots A_{n-1}$ to $A_{k0}A_{k1}\ldots A_{k,n-1},$ where $A_{k0}=A$ and $A_{ki}$ is the image of $A_{i}$, for all $i=1,2,\ldots,n-1.$

From the condition of the statement, we have
\[ \sum_{k=0}^{n-1} \sum_{i=0}^{n-1}{f(A_{ki})}=0.  \]
Observe that in the sum the number $f(A)$ appears $n$ times, therefore
\[ nf(A)+\sum_{k=0}^{n-1} \sum_{i=1}^{n-1}{f(A_{ki})}=0.  \]
On the other hand, we have
\[ \sum_{k=0}^{n-1} \sum_{i=1}^{n-1}{f(A_{ki})}=\sum_{i=1}^{n-1} \sum_{k=0}^{n-1}{f(A_{ki})}=0,  \]
since the polygons $A_{0i}A_{1i}\ldots A_{n-1,i}$ are all regular $n-$gons. From the two equalities above we deduce $f(A)=0,$ hence $f$ is the zero function.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheUltimate123
1740 posts
#8 • 1 Y
Y by MS_asdfgzxcvb
We may assume \(n\) is even, since for \(n\) odd, the sum of the vertices in any \(2n\)-gon is zero.

Now let \(A_1\cdots A_n\) be a regular \(n\)-gon. For each \(i\) and \(j\), let \(M_{ij}\) be the midpoint of \(\overline{A_iA_j}\) (so in particular, \(M_iM_i=A_i\)), and let \(O\) be the center of the \(n\)-gon.

We know since \(M_{i1}M_{i2}\cdots M_{in}\) and \(M_{1,1+i}M_{2,2+i}\cdots M_{n,n+i}\) are regular \(n\)-gons that \begin{align*}     0=\sum_i\sum_jf(M_{ij})     =n\cdot f(O)+\sum_j\sum_{\substack{i<n\\ i\ne n/2}}f(M_{j,j+i})     &=n\cdot f(O) \end{align*}
This post has been edited 1 time. Last edited by TheUltimate123, Jun 30, 2021, 8:40 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11379 posts
#9
Y by
ehsan2004 wrote:
Let $ f: \mathbb{R}^2 \rightarrow \mathbb{R} $ be a function such that for every regular $ n $-gon $ A_1A_2 \ldots A_n $ we have $ f(A_1)+f(A_2)+\cdots +f(A_n)=0 $. Prove that $ f(x)=0 $ for all reals $ x $.

The claim for just $n=4$:
https://aops.com/community/p1703551
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AshAuktober
1009 posts
#10
Y by
For $n$ even, draw a lot of $n$-gons with diametres the segments through the respective vertices and the centre of some $n$-gon, and the calculation works out to give $f(\text{ centre }) = 0$, so we're done.
For $n$ odd, notice that the statement then holds for $2n$ as well, so we're done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Zany9998
11 posts
#11
Y by
I wonder if there exists a coloring proof. i.e. label all negative points red, all 0 points yellow and all positive points green. I’ve proved that both red and green are dense in R^2 if whole board is not yellow. Is this sufficient to prove that there exists a regular n-gon whose vertices have at least one red and no green or vice versa? The condition seems to be strong enough.
Z K Y
N Quick Reply
G
H
=
a