2007 iTest Problems/Problem 11

Problem 11

Consider the "tower of power" $2^{2^{2^{\cdot^{\cdot^{\cdot^{2}}}}}}$, where there are 2007 twos including the base. What is the last (units digit) of this number?

$\text{(A) }0\qquad \text{(B) }1\qquad \text{(C) }2\qquad \text{(D) }3\qquad \text{(E) }4\qquad \text{(F) }5\qquad \text{(G) }6\qquad \text{(H) }7\qquad \text{(I) }8\qquad \text{(J) }9\qquad \text{(K) }2007\qquad$

Solution

Note that $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, and $2^5 = 32$. The units digit of $2^n$ cycle every time $n$ is increased by $4$.

Since $2^{2^{2^{\cdot^{\cdot^{\cdot^{2}}}}}}$ with $2006$ twos is a multiple of four, the units digit is $\boxed{\textbf{(G) }6}$.

See Also

2007 iTest (Problems, Answer Key)
Preceded by:
Problem 10
Followed by:
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4