# 2007 iTest Problems/Problem 46

## Problem

Let $(x,y,z)$ be an ordered triplet of real numbers that satisfies the following system of equations: \begin{align*}x+y^2+z^4&=0,\\y+z^2+x^4&=0,\\z+x^2+y^4&=0.\end{align*} If $m$ is the minimum possible value of $\lfloor x^3+y^3+z^3\rfloor$, find the modulo $2007$ residue of $m$.

## Solution

Rearrange the terms to get $$y^2 + z^4 = -x$$ $$z^2 + x^4 = -y$$ $$x^2 + y^4 = -z$$ Since the left hand side of all three equations is greater than or equal to 0, $x,y,z \le 0$. Also, note that the equations have symmetry, so WLOG, let $0 \ge x \ge y \ge z$. By substitution, we have $$y^2 + z^4 \le z^2 + x^4 \le x^2 + y^4$$

Note that $0 \le x^2 \le y^2 \le z^2$ and $0 \le x^4 \le y^4 \le z^4$. That means $x^2 + y^4 \le x^2 + z^4$. Since $y^2 + z^4 \le x^2 + y^4$, $$y^2 + z^4 \le x^2 + z^4$$ $$y^2 \le x^2$$ Since $x^2 \le y^2$, then $x^2 = y^2$. Because $x$ and $y$ are nonpositive, $x = y$.

Using substitution in the original system, $$x^2 + z^4 = z^2 + x^4$$ $$(z^2 + x^2)(z^2 - x^2) - (z^2 - x^2) = 0$$ $$(z^2 - x^2)(x^2 + z^2 - 1) = 0$$ To find the real solutions, we use casework and the Zero Product Property.

Case 1: $z^2 = x^2$

If $z^2 = x^2$, then since $z$ and $x$ are nonpositive, then $z = x$. Substitution results in $$x+x^2+x^4 = 0$$ $$x(1+x+x^3) = 0$$ That means $x = 0$ or $x^3 + x + 1 = 0$. For the first equation, $m = 0$. For the second equation, note that $x^3 = -x-1$, and since $x = y = z$, $m = \lfloor -3x-3 \rfloor$, where $x$ is a real number. Since $-\tfrac{1}{3}^3 - \tfrac13 + 1 = \tfrac{16}{27}$ and $-\tfrac{2}{3}^3 - \tfrac23 + 1 = \tfrac{1}{27}$, the root of $x$ is less than $-\tfrac23$ but more than $-1$, so $$0 > -3x-3 > -1$$ $$m = \lfloor -3x-3 \rfloor = -1$$

Case 2: $x^2 + z^2 = 1$

Because $x^2 \le z^2$, $x^2 \le \frac12$. From one of the original equations, $$z^2 + x^4 = -y$$ $$1 - x^2 + x^4 + x = 0$$ Using the Rational Root Theorem, $$(x+1)(x^3 - x^2 + 1) = 0$$ Note that if $x = -1$, then $x^2 \ge \tfrac12$, so that won’t work. Let $x = -a$ (where $a \ge 0$ since $x \le 0$), so $$a^3 + a^2 = 1$$ If $a \le \tfrac{\sqrt2}{2}$, then $$a^3 + a^2 \le \frac{\sqrt2}{4} + \frac12$$ $$a^3 + a^2 \le \frac{\sqrt2 + 2}{4} < 1$$ Thus, there are no solutions in this case.

From the two cases, the smallest possible value of $m$ is $-1$, so the modulo $2007$ residue of $m$ is $\boxed{2006}$.

## See Also

 2007 iTest (Problems) Preceded by:Problem 45 Followed by:Problem 47 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4
Invalid username
Login to AoPS