2024 AMC 10A Problems
2024 AMC 10A (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
What is the value of
Problem 2
A model used to estimate the time it will take to hike to the top of the mountain on a trail is of the form where and are constants, is the time in minutes, is the length of the trail in miles, and is the altitude gain in feet. The model estimates that it will take minutes to hike to the top if a trail is miles long and ascends feet, as well as if a trail is miles long and ascends feet. How many minutes does the model estimates it will take to hike to the top if the trail is miles long and ascends feet?
Problem 3
What is the sum of the digits of the smallest prime that can be written as a sum of distinct primes?
Problem 4
The number is written as the sum of not necessarily distinct two-digit numbers. What is the least number of two-digit numbers needed to write this sum?
Problem 5
What is the least value of such that is a multiple of ?
Problem 6
What is the minimum number of successive swaps of adjacent letters in the string that are needed to change the string to (For example, swaps are required to change to one such sequence of swaps is )
Problem 7
The product of three integers is . What is the least possible positive sum of the three integers?
Problem 8
Amy, Bomani, Charlie, and Daria work in a chocolate factory. On Monday Amy, Bomani, and Charlie started working at and were able to pack , , and packages, respectively, every minutes. At some later time, Daria joined the group, and Daria was able to pack packages every minutes. Together, they finished packing packages at exactly . At what time did Daria join the group?
Problem 9
In how many ways can 6 juniors and 6 seniors form 3 disjoint teams of 4 people so that each team has 2 juniors and 2 seniors?
Problem 10
XXX
Problem 11
XXX
Infinitely many
Problem 12
XXX
Problem 13
XXX
Problem 14
One side of an equilateral triangle of height 24 lies on line . A circle of radius is tangent to line and is externally tangent to the triangle. The area of the region exterior to the triangle and the circle and bounded by the triangle, the circle, and line can be written as , where , , and are positive integers and is not divisible by the square of any prime. What is ?
Problem 15
Let be the greatest integer such that both and are perfect squares. What is the units digit of ?
Problem 16
XXX
Problem 17
Two teams are in a best-two-out-of-three playoff: the teams will play at most games, and the winner of the playoff is the first team to win games. The first game is played on Team A's home field, and the remaining games are played on Team B's home field. Team A has a chance of winning at home, and its probability of winning when playing away from home is . Outcomes of the games are independent. The probability that Team A wins the playoff is . Them can be written in the form , where and are positive integers. What is ?
Problem 18
There are exactly positive integers such that the base- integer is divisible by (where is in base ten). What is the sum of the digits of ?
Problem 19
The first three terms of a geometric sequence are the integers and , where . What is the sum of the digits of the least possible value of ?
Problem 20
XXX
Problem 21
XXX
Problem 22
XXX
Problem 23
XXX
Problem 24
A bee is moving in three-dimensional space. A fair six-sided die with faces labeled and is rolled. Suppose the bee occupies the point If the die shows , then the bee moves to the point and if the die shows then the bee moves to the point Analogous moves are made with the other four outcomes. Suppose the bee starts at the point and the die is rolled four times. What is the probability that the bee traverses four distinct edges of some unit cube?
Problem 25
XXX
See also
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by 2023 AMC 10B Problems |
Followed by 2024 AMC 10B Problems | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |