Difference between revisions of "2019 AMC 10B Problems/Problem 19"

m (Solution)
Line 1: Line 1:
 +
{{duplicate|[[2019 AMC 10B Problems|2019 AMC 10B #19]] and [[2019 AMC 12B Problems|2019 AMC 12B #14]]}}
 +
 
==Problem==
 
==Problem==
 
Let <math>S</math> be the set of all positive integer divisors of <math>100,000.</math> How many numbers are the product of two distinct elements of <math>S?</math>
 
Let <math>S</math> be the set of all positive integer divisors of <math>100,000.</math> How many numbers are the product of two distinct elements of <math>S?</math>
Line 4: Line 6:
 
<math>\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121</math>
 
<math>\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121</math>
  
==Solution==
+
==Solution 1==
 
To find the number of numbers that are the product of two distinct elements of <math>S</math>, we first square <math>S</math> and factor it. Factoring, we find <math>S^2 = 2^{10} \cdot 5^{10}</math>. Therefore, <math>S^2</math> has <math>(10 + 1)(10 + 1) = 121</math> distinct factors. Each of these can be achieved by multiplying two factors of <math>S</math>. However, the factors must be distinct, so we eliminate <math>1</math> and <math>S^2</math>, as well as <math>2^{10}</math> and <math>5^{10}</math>, so the answer is <math>121 - 4 = 117</math>.  
 
To find the number of numbers that are the product of two distinct elements of <math>S</math>, we first square <math>S</math> and factor it. Factoring, we find <math>S^2 = 2^{10} \cdot 5^{10}</math>. Therefore, <math>S^2</math> has <math>(10 + 1)(10 + 1) = 121</math> distinct factors. Each of these can be achieved by multiplying two factors of <math>S</math>. However, the factors must be distinct, so we eliminate <math>1</math> and <math>S^2</math>, as well as <math>2^{10}</math> and <math>5^{10}</math>, so the answer is <math>121 - 4 = 117</math>.  
  
 
Solution by greersc. (Edited by AZAZ12345 and then by greersc once again)
 
Solution by greersc. (Edited by AZAZ12345 and then by greersc once again)
 +
 +
==Solution 2==
 +
 +
The prime factorization of 100,000 is <math>2^5 \cdot 5^5</math>. Thus, we choose two numbers <math>2^a5^b</math> and <math>2^c5^d</math> where <math>0 \le a,b,c,d \le 5</math> and <math>(a,b) \neq (c,d)</math>, whose product is <math>2^{a+c}5^{b+d}</math>, where <math>0 \le a+c \le 10</math> and <math>0 \le b+d \le 10</math>.
 +
 +
Consider <math>100000^2 = 2^{10}5^{10}</math>. The number of divisors is <math>(10+1)(10+1) = 121</math>. However, some of the divisors of <math>2^{10}5^{10}</math> cannot be written as a product of two distinct divisors of <math>2^5 \cdot 5^5</math>, namely: <math>1 = 2^05^0</math>, <math>2^{10}5^{10}</math>, <math>2^{10}</math>, and <math>5^{10}</math>. This gives <math>121-4 = 117</math> candidate numbers. It is not too hard to show that every number of the form <math>2^p5^q</math> where <math>0 \le p, q \le 10</math>, and <math>p,q</math> are not both 0 or 10, can be written as a product of two distinct elements in <math>S</math>. Hence the answer is <math>\boxed{\textbf{(C) } 117}</math>.
 +
 +
-scrabbler94
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2019|ab=B|num-b=18|num-a=20}}
 
{{AMC10 box|year=2019|ab=B|num-b=18|num-a=20}}
 +
{{AMC12 box|year=2019|ab=B|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:03, 14 February 2019

The following problem is from both the 2019 AMC 10B #19 and 2019 AMC 12B #14, so both problems redirect to this page.

Problem

Let $S$ be the set of all positive integer divisors of $100,000.$ How many numbers are the product of two distinct elements of $S?$

$\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121$

Solution 1

To find the number of numbers that are the product of two distinct elements of $S$, we first square $S$ and factor it. Factoring, we find $S^2 = 2^{10} \cdot 5^{10}$. Therefore, $S^2$ has $(10 + 1)(10 + 1) = 121$ distinct factors. Each of these can be achieved by multiplying two factors of $S$. However, the factors must be distinct, so we eliminate $1$ and $S^2$, as well as $2^{10}$ and $5^{10}$, so the answer is $121 - 4 = 117$.

Solution by greersc. (Edited by AZAZ12345 and then by greersc once again)

Solution 2

The prime factorization of 100,000 is $2^5 \cdot 5^5$. Thus, we choose two numbers $2^a5^b$ and $2^c5^d$ where $0 \le a,b,c,d \le 5$ and $(a,b) \neq (c,d)$, whose product is $2^{a+c}5^{b+d}$, where $0 \le a+c \le 10$ and $0 \le b+d \le 10$.

Consider $100000^2 = 2^{10}5^{10}$. The number of divisors is $(10+1)(10+1) = 121$. However, some of the divisors of $2^{10}5^{10}$ cannot be written as a product of two distinct divisors of $2^5 \cdot 5^5$, namely: $1 = 2^05^0$, $2^{10}5^{10}$, $2^{10}$, and $5^{10}$. This gives $121-4 = 117$ candidate numbers. It is not too hard to show that every number of the form $2^p5^q$ where $0 \le p, q \le 10$, and $p,q$ are not both 0 or 10, can be written as a product of two distinct elements in $S$. Hence the answer is $\boxed{\textbf{(C) } 117}$.

-scrabbler94

See Also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png