Difference between revisions of "2019 AMC 8 Problems/Problem 7"

(Solution 1)
(Solution 1)
Line 8: Line 8:
 
148</math> points in her <math>2</math> tests. So the minimum score she can get is when one of her <math>2</math> scores is <math>100</math>. So the least possible score she can get is <math>\boxed{\textbf{(A)}\ 48}</math>.
 
148</math> points in her <math>2</math> tests. So the minimum score she can get is when one of her <math>2</math> scores is <math>100</math>. So the least possible score she can get is <math>\boxed{\textbf{(A)}\ 48}</math>.
 
~heeeeeeeheeeeee
 
~heeeeeeeheeeeee
 +
 +
 
Note: You can verify that <math>\boxed{48}</math> is the right answer because it is the lowest answer out of the 5. Since it is possible to get 48, we are guaranteed that that is the right answer.
 
Note: You can verify that <math>\boxed{48}</math> is the right answer because it is the lowest answer out of the 5. Since it is possible to get 48, we are guaranteed that that is the right answer.
 
~~ gorefeebuddie
 
~~ gorefeebuddie

Revision as of 00:27, 25 November 2019

Problem 7

Shauna takes five tests, each worth a maximum of $100$ points. Her scores on the first three tests are $76$, $94$, and $87$. In order to average $81$ for all five tests, what is the lowest score she could earn on one of the other two tests?

$\textbf{(A) }48\qquad\textbf{(B) }52\qquad\textbf{(C) }66\qquad\textbf{(D) }70\qquad\textbf{(E) }74$

Solution 1

Right now, she scored $76, 94,$ and $87$ points, with a total of $257$ points. She wants her average to be $81$ for her $5$ tests so she needs to score $405$ points in total. She needs to score a total of $(405-257)  148$ points in her $2$ tests. So the minimum score she can get is when one of her $2$ scores is $100$. So the least possible score she can get is $\boxed{\textbf{(A)}\ 48}$. ~heeeeeeeheeeeee


Note: You can verify that $\boxed{48}$ is the right answer because it is the lowest answer out of the 5. Since it is possible to get 48, we are guaranteed that that is the right answer. ~~ gorefeebuddie


Another way to do this (to save on computation) is to compare each of the scores with the average of $81$: $76$ --> $-5$ $94$ --> $+13$ $87$ --> $+6$ $100$ --> $19$

So the last one has to be $-33$ (since all the differences have to sum to $0$), which corresponds to $81-33 = \boxed{48}$.

See Also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png