Difference between revisions of "2019 AMC 10B Problems/Problem 6"
m |
(→Video Solution) |
||
Line 31: | Line 31: | ||
~IceMatrix | ~IceMatrix | ||
+ | |||
+ | https://youtu.be/6YFN_hwotUk | ||
+ | |||
+ | ~savannahsolver | ||
==See Also== | ==See Also== |
Revision as of 12:38, 29 June 2020
- The following problem is from both the 2019 AMC 10B #6 and 2019 AMC 12B #4, so both problems redirect to this page.
Contents
[hide]Problem
There is a positive integer such that . What is the sum of the digits of ?
Solution
Solution 1
Solving by the quadratic formula, (since clearly ). The answer is therefore .
Solution 2
Dividing both sides by gives Since is non-negative, . The answer is .
Solution 3
Dividing both sides by as before gives . Now factor out , giving . By considering the prime factorization of , a bit of experimentation gives us and , so , so the answer is .
Video Solution
~IceMatrix
~savannahsolver
See Also
2019 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2019 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.