Difference between revisions of "2007 Cyprus MO/Lyceum/Problem 17"

 
 
(One intermediate revision by the same user not shown)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
<math>2^{2007\bmod4}\equiv2^3\equiv8\bmod10</math>
+
<math>2^{2007\bmod4}\equiv2^3\equiv8\mod10</math>
  
<math>3^{2007\bmod4}\equiv3^3\equiv7\bmod10</math>
+
<math>3^{2007\bmod4}\equiv3^3\equiv7\mod10</math>
  
<math>5^{2007\bmod4}\equiv5^3\equiv5\bmod10</math>
+
<math>5^{2007\bmod4}\equiv5^3\equiv5\mod10</math>
  
<math>7^{2007\bmod4}\equiv7^3\equiv3\bmod10</math>
+
<math>7^{2007\bmod4}\equiv7^3\equiv3\mod10</math>
  
<math>8+7+5+3\equiv3\bmod10</math>
+
<math>8+7+5+3\equiv3\mod10</math>
  
 
==See also==
 
==See also==
 
{{CYMO box|year=2007|l=Lyceum|num-b=16|num-a=18}}
 
{{CYMO box|year=2007|l=Lyceum|num-b=16|num-a=18}}
 
[[Category:Introductory Combinatorics Problems]]
 

Latest revision as of 20:16, 6 May 2007

Problem

The last digit of the number $a=2^{2007}+3^{2007}+5^{2007}+7^{2007}$ is

$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 8$

Solution

$2^{2007\bmod4}\equiv2^3\equiv8\mod10$

$3^{2007\bmod4}\equiv3^3\equiv7\mod10$

$5^{2007\bmod4}\equiv5^3\equiv5\mod10$

$7^{2007\bmod4}\equiv7^3\equiv3\mod10$

$8+7+5+3\equiv3\mod10$

See also

2007 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30