Difference between revisions of "1995 AIME Problems/Problem 8"
(→Solution 1) |
(→Solution 2) |
||
Line 14: | Line 14: | ||
We know that <math>x \equiv 0 \mod y</math> and <math>x+1 \equiv 0 \mod y+1</math>. | We know that <math>x \equiv 0 \mod y</math> and <math>x+1 \equiv 0 \mod y+1</math>. | ||
− | Write <math>x</math> | + | Write <math>x</math> as <math>ky</math> for some integer <math>k</math>. Then, <math>ky+1 \equiv 0\mod y+1</math>. We can add <math>k</math> to each side in order to factor out a <math>y+1</math>. So, <math>ky+k+1 \equiv k \mod y+1</math> or <math>k(y+1)+1 \equiv k \mod y+1</math>. We know that <math>k(y+1) \equiv 0 \mod y+1</math>. We finally achieve the congruence <math>1-k \equiv 0 \mod y+1</math>. |
We can now write <math>k</math> as <math>(y+1)a+1</math>. Plugging this back in, if we have a value for <math>y</math>, then <math>x = ky = ((y+1)a+1)y = y(y+1)a+y</math>. We only have to check values of <math>y</math> when <math>y(y+1)<100</math>. This yields the equations <math>x = 2a+1, 6a+2, 12a+3, 20a+4, 30a+5, 42a+6, 56a+7, 72a+8, 90a+9</math>. | We can now write <math>k</math> as <math>(y+1)a+1</math>. Plugging this back in, if we have a value for <math>y</math>, then <math>x = ky = ((y+1)a+1)y = y(y+1)a+y</math>. We only have to check values of <math>y</math> when <math>y(y+1)<100</math>. This yields the equations <math>x = 2a+1, 6a+2, 12a+3, 20a+4, 30a+5, 42a+6, 56a+7, 72a+8, 90a+9</math>. |
Revision as of 22:11, 30 January 2023
Contents
[hide]Problem
For how many ordered pairs of positive integers with are both and integers?
Solution 1
Since , , then (the bars indicate divisibility) and . By the Euclidean algorithm, these can be rewritten respectively as and , which implies that both . Also, as , it follows that . [1]
Thus, for a given value of , we need the number of multiples of from to (as ). It follows that there are satisfactory positive integers for all integers . The answer is
^ Another way of stating this is to note that if and are integers, then and must be integers. Since and cannot share common prime factors, it follows that must also be an integer.
Solution 2
We know that and .
Write as for some integer . Then, . We can add to each side in order to factor out a . So, or . We know that . We finally achieve the congruence .
We can now write as . Plugging this back in, if we have a value for , then . We only have to check values of when . This yields the equations .
Finding all possible values of such that , we get
See also
1995 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.