Difference between revisions of "2019 AMC 10B Problems/Problem 16"
Magnetoninja (talk | contribs) (→Solution 1) |
Magnetoninja (talk | contribs) (→Solution 5 (Short with Trig)) |
||
Line 52: | Line 52: | ||
==Solution 5 (Short with Trig)== | ==Solution 5 (Short with Trig)== | ||
− | Let <math>\angle B=\ | + | Let <math>\angle B=\theta_1</math>, then <math>\angle A=90-\theta_1</math>. Since <math>AC=AD</math>, <math>\angle ADC=90-\theta_1</math>. Similarly, <math>\angle BDE=\theta_1</math>. Then, <math>\angle EDC=180-\theta_1-(90-\theta_1)=90</math>. Therefore <math>\bigtriangleup CDE</math> is right. Let <math>AC=CD=4</math> and <math>DE=EB=3</math>, then <math>EC=5</math>. Let <math>\angle DEC=\angle ACD=\theta_2</math>. We know that <math>\cos \theta_2=\frac{3}{5}</math> so we can apply the Law of Cosines on <math>\bigtriangleup ACD</math> to find <math>AD=\sqrt{32-32\cdot{\frac{3}{5}}}=\sqrt{\frac{2}{5}\cdot{32}} \Longrightarrow \frac{8}{\sqrt{5}}</math>. Doing Pythagorean for <math>BA</math>, we get <math>4\sqrt{5}</math>. Then, <math>BD=4\sqrt{5}-\frac{8}{\sqrt{5}} \Longrightarrow \frac{12}{\sqrt{5}}</math>. Then, the requested ratio is <math>8:12=\boxed{\textbf{(A) } 2:3}</math>. |
~[https://artofproblemsolving.com/wiki/index.php/User:Magnetoninja Magnetoninja] | ~[https://artofproblemsolving.com/wiki/index.php/User:Magnetoninja Magnetoninja] |
Revision as of 16:25, 6 June 2023
Contents
[hide]Problem
In with a right angle at , point lies in the interior of and point lies in the interior of so that and the ratio . What is the ratio
Diagram
~ By Little Mouse
Solution 1
Without loss of generality, let and . Let and . As and are isosceles, and . Then , so is a triangle with .
Then , and is a triangle.
In isosceles triangles and , drop altitudes from and onto ; denote the feet of these altitudes by and respectively. Then by AAA similarity, so we get that , and . Similarly we get , and .
Alternatively, once finding the length of one could use the Pythagorean Theorem to find and consequently , and then compute the ratio.
Solution 2
Let , and . (For this solution, is above , and is to the right of ). Also let , so , which implies . Similarly, , which implies . This further implies that .
Now we see that . Thus is a right triangle, with side lengths of , , and (by the Pythagorean Theorem, or simply the Pythagorean triple ). Therefore (by definition), , and . Hence (by the double angle formula), giving .
By the Law of Cosines in , if , we have Now . Thus the answer is .
Solution 3
WLOG, let , and . . Because of this, is a 3-4-5 right triangle. Draw the altitude of . is by the base-height triangle area formula. is similar to (AA). So . is of . Therefore, is .
~Thegreatboy90
Solution 4 (a bit long)
WLOG, and . Notice that in , we have . Since and , we find that and , so and is right. Therefore, by 3-4-5 triangle, and . Define point F such that is an altitude; we know the area of the whole triangle is and we know the hypotenuse is , so . By the geometric mean theorem, . Solving the quadratic we get , so . For now, assume . Then . splits into two parts (quick congruence by Leg-Angle) so and . . Now we know and , we can find or .
Solution 5 (Short with Trig)
Let , then . Since , . Similarly, . Then, . Therefore is right. Let and , then . Let . We know that so we can apply the Law of Cosines on to find . Doing Pythagorean for , we get . Then, . Then, the requested ratio is .
Video Solution 1
~IceMatrix
Video Solution by OmegaLearn
https://youtu.be/4_x1sgcQCp4?t=4245
~ pi_is_3.14
See Also
2019 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.