Difference between revisions of "2002 AMC 12B Problems/Problem 1"

(Solution 3)
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{duplicate|[[2002 AMC 12B Problems|2002 AMC 12B #1]] and [[2002 AMC 10B Problems|2002 AMC 10B #3]]}}
 
{{duplicate|[[2002 AMC 12B Problems|2002 AMC 12B #1]] and [[2002 AMC 10B Problems|2002 AMC 10B #3]]}}
 
== Problem ==
 
== Problem ==
The [[arithmetic mean]] of the nine numbers in the set <math>\{9, 99, 999, 9999, \ldots, 999999999\}</math> is a <math>9</math>-digit number <math>M</math>, all of whose digits are distinct. The number <math>M</math> does not contain the digit
+
The [[arithmetic mean]] of the nine numbers in the set <math>\{9, 99, 999, 9999, \ldots, 999999999\}</math> is a <math>9</math>-digit number <math>M</math>, all of whose digits are distinct. The number <math>M</math> doesn't contain the digit
  
 
<math>\mathrm{(A)}\ 0
 
<math>\mathrm{(A)}\ 0
Line 8: Line 8:
 
\qquad\mathrm{(D)}\ 6
 
\qquad\mathrm{(D)}\ 6
 
\qquad\mathrm{(E)}\ 8</math>
 
\qquad\mathrm{(E)}\ 8</math>
 +
 
== Solution 1 ==
 
== Solution 1 ==
We wish to find <math>\frac{9+99+\cdots +999999999}{9}</math>, or <math>\frac{9(1+11+111+\cdots +111111111)}{9}=123456789</math>. This does not have the digit 0, so the answer is <math>\boxed{\mathrm{(A)}\ 0}</math>
+
We wish to find <math>\frac{9+99+\cdots +999999999}{9}</math>, or <math>\frac{9(1+11+111+\cdots +111111111)}{9}=123456789</math>. This doesn't have the digit 0, so the answer is <math>\boxed{\mathrm{(A)}\ 0}</math>
 +
 
 
== Solution 2 ==
 
== Solution 2 ==
 
Notice that the final number is guaranteed to have the digits <math>\{1, 3, 5, 7, 9\}</math> and that each of these digits can be paired with an even number adding up to 9. <math>\boxed{\mathrm{(A)}\ 0}</math> can be taken out, with the other digits fulfilling divisibility by 9.
 
Notice that the final number is guaranteed to have the digits <math>\{1, 3, 5, 7, 9\}</math> and that each of these digits can be paired with an even number adding up to 9. <math>\boxed{\mathrm{(A)}\ 0}</math> can be taken out, with the other digits fulfilling divisibility by 9.
 +
 +
==Solution 3==
 +
The arithmetic mean is <math>\frac{(10^1-1)+(10^2-1)+\ldots+(10^9-1)}{9}=\frac{1111111101}{9}=123456789</math>. So select <math>\boxed{\mathrm{A}}</math>.
 +
~hastapasta
  
 
== See also ==
 
== See also ==

Revision as of 18:54, 23 June 2023

The following problem is from both the 2002 AMC 12B #1 and 2002 AMC 10B #3, so both problems redirect to this page.

Problem

The arithmetic mean of the nine numbers in the set $\{9, 99, 999, 9999, \ldots, 999999999\}$ is a $9$-digit number $M$, all of whose digits are distinct. The number $M$ doesn't contain the digit

$\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 2 \qquad\mathrm{(C)}\ 4 \qquad\mathrm{(D)}\ 6 \qquad\mathrm{(E)}\ 8$

Solution 1

We wish to find $\frac{9+99+\cdots +999999999}{9}$, or $\frac{9(1+11+111+\cdots +111111111)}{9}=123456789$. This doesn't have the digit 0, so the answer is $\boxed{\mathrm{(A)}\ 0}$

Solution 2

Notice that the final number is guaranteed to have the digits $\{1, 3, 5, 7, 9\}$ and that each of these digits can be paired with an even number adding up to 9. $\boxed{\mathrm{(A)}\ 0}$ can be taken out, with the other digits fulfilling divisibility by 9.

Solution 3

The arithmetic mean is $\frac{(10^1-1)+(10^2-1)+\ldots+(10^9-1)}{9}=\frac{1111111101}{9}=123456789$. So select $\boxed{\mathrm{A}}$. ~hastapasta

See also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png