Difference between revisions of "2021 AMC 12B Problems/Problem 8"
m (→Solution 1: revise diagram, delete resolved comment) |
(→Solution 3 (Stewart's Theorem)) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 6: | Line 6: | ||
<math>\textbf{(A) }5\frac12 \qquad \textbf{(B) }6 \qquad \textbf{(C) }6\frac12 \qquad \textbf{(D) }7 \qquad \textbf{(E) }7\frac12</math> | <math>\textbf{(A) }5\frac12 \qquad \textbf{(B) }6 \qquad \textbf{(C) }6\frac12 \qquad \textbf{(D) }7 \qquad \textbf{(E) }7\frac12</math> | ||
− | ==Solution 1== | + | ==Solution 1 (Pythagorean Theorem)== |
<asy> | <asy> | ||
Line 45: | Line 45: | ||
- One with base <math>\frac{38}{2}= 19</math>, height <math>d</math>, and hypotenuse <math>r</math> (<math>\triangle RAO</math> on the diagram) | - One with base <math>\frac{38}{2}= 19</math>, height <math>d</math>, and hypotenuse <math>r</math> (<math>\triangle RAO</math> on the diagram) | ||
− | - Another with base <math>\frac{34}{2} = 17</math>, height <math> | + | - Another with base <math>\frac{34}{2} = 17</math>, height <math>3d</math>, and hypotenuse <math>r</math> (<math>\triangle LBO</math> on the diagram) |
By the Pythagorean theorem, we can create the following system of equations: | By the Pythagorean theorem, we can create the following system of equations: | ||
Line 55: | Line 55: | ||
Solving, we find <math>d = 3</math>, so <math>2d = \boxed{\textbf{(B)}\ 6}</math>. | Solving, we find <math>d = 3</math>, so <math>2d = \boxed{\textbf{(B)}\ 6}</math>. | ||
− | -Solution by Joeya | + | -Solution by Joeya, diagram by Jamess2022(burntTacos), and minor edits by lpieleanu. |
==Solution 2 (Coordinates)== | ==Solution 2 (Coordinates)== | ||
Line 117: | Line 117: | ||
~Punxsutawney Phil | ~Punxsutawney Phil | ||
+ | |||
+ | |||
+ | ==Video Solution (Super Fast. Just 1 min!)== | ||
+ | https://youtu.be/145UJbG4aCQ | ||
+ | |||
+ | <i>~Education, the Study of Everything </i> | ||
==Video Solution by Hawk Math== | ==Video Solution by Hawk Math== | ||
Line 126: | Line 132: | ||
== Video Solution by OmegaLearn (Circular Geometry) == | == Video Solution by OmegaLearn (Circular Geometry) == | ||
https://youtu.be/XNYq4ZMBtBU | https://youtu.be/XNYq4ZMBtBU | ||
+ | |||
+ | ~pi_is_3.14 | ||
==Video Solution by TheBeautyofMath== | ==Video Solution by TheBeautyofMath== |
Revision as of 23:15, 18 July 2023
- The following problem is from both the 2021 AMC 10B #14 and 2021 AMC 12B #8, so both problems redirect to this page.
Contents
- 1 Problem
- 2 Solution 1 (Pythagorean Theorem)
- 3 Solution 2 (Coordinates)
- 4 Solution 3 (Stewart's Theorem)
- 5 Video Solution (Super Fast. Just 1 min!)
- 6 Video Solution by Hawk Math
- 7 Video Solution by Punxsutawney Phil
- 8 Video Solution by OmegaLearn (Circular Geometry)
- 9 Video Solution by TheBeautyofMath
- 10 Video Solution by Interstigation
- 11 See Also
Problem
Three equally spaced parallel lines intersect a circle, creating three chords of lengths and . What is the distance between two adjacent parallel lines?
Solution 1 (Pythagorean Theorem)
Since two parallel chords have the same length (), they must be equidistant from the center of the circle. Let the perpendicular distance of each chord from the center of the circle be . Thus, the distance from the center of the circle to the chord of length is
and the distance between each of the chords is just . Let the radius of the circle be . Drawing radii to the points where the lines intersect the circle, we create two different right triangles:
- One with base , height , and hypotenuse ( on the diagram)
- Another with base , height , and hypotenuse ( on the diagram)
By the Pythagorean theorem, we can create the following system of equations:
Solving, we find , so .
-Solution by Joeya, diagram by Jamess2022(burntTacos), and minor edits by lpieleanu.
Solution 2 (Coordinates)
Because we know that the equation of a circle is where the center of the circle is and the radius is , we can find the equation of this circle by centering it on the origin. Doing this, we get that the equation is . Now, we can set the distance between the chords as so the distance from the chord with length 38 to the diameter is .
Therefore, the following points are on the circle as the y-axis splits the chord in half, that is where we get our x value:
Now, we can plug one of the first two value in as well as the last one to get the following equations:
Subtracting these two equations, we get - therefore, we get . We want to find because that's the distance between two chords. So, our answer is .
~Tony_Li2007
Solution 3 (Stewart's Theorem)
If is the requested distance, and is the radius of the circle, Stewart's Theorem applied to with cevian gives This simplifies to . Similarly, another round of Stewart's Theorem applied to with cevian gives This simplifies to . Dividing the top equation by and the bottom equation by results in the system of equations By transitive, . Therefore
~Punxsutawney Phil
Video Solution (Super Fast. Just 1 min!)
~Education, the Study of Everything
Video Solution by Hawk Math
https://www.youtube.com/watch?v=VzwxbsuSQ80
Video Solution by Punxsutawney Phil
Video Solution by OmegaLearn (Circular Geometry)
~pi_is_3.14
Video Solution by TheBeautyofMath
https://youtu.be/L1iW94Ue3eI?t=1118 (for AMC 10B)
https://youtu.be/kuZXQYHycdk?t=574 (for AMC 12B)
~IceMatrix
Video Solution by Interstigation
~Interstigation
See Also
2021 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2021 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.