Difference between revisions of "1997 AIME Problems/Problem 14"
m (→Solution: minor fixes) |
(sol2) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Let <math> | + | Let <math>v</math> and <math>w</math> be distinct, randomly chosen [[root]]s of the equation <math>z^{1997}-1=0</math>. Let <math>\frac{m}{n}</math> be the [[probability]] that <math>\sqrt{2+\sqrt{3}}\le\left|v+w\right|</math>, where <math>m</math> and <math>n</math> are [[relatively prime]] [[positive]] [[integer]]s. Find <math>m+n</math>. |
+ | __TOC__ | ||
== Solution == | == Solution == | ||
− | :<math> | + | === Solution 1 === |
+ | :<math>z^{1997}=1=1(\cos 0 + i \sin 0)</math> | ||
By [[De Moivre's Theorem]], we find that (<math>k \in \{0,1,\ldots,1996\}</math>) | By [[De Moivre's Theorem]], we find that (<math>k \in \{0,1,\ldots,1996\}</math>) | ||
− | :<math> | + | :<math>z=\cos\left(\frac{2\pi k}{1997}\right)+i\sin\left(\frac{2\pi k}{1997}\right)</math> |
− | Now, let <math> | + | Now, let <math>v</math> be the root corresponding to <math>\theta=\frac{2\pi m}{1997}</math>, and let <math>w</math> be the root corresponding to <math>\theta=\frac{2\pi n}{1997}</math>. The magnitude of <math>v+w</math> is therefore: |
:<math>\sqrt{\left(\cos\left(\frac{2\pi m}{1997}\right) + \cos\left(\frac{2\pi n}{1997}\right)\right)^2 + \left(\sin\left(\frac{2\pi m}{1997}\right) + \sin\left(\frac{2\pi n}{1997}\right)\right)^2}</math> | :<math>\sqrt{\left(\cos\left(\frac{2\pi m}{1997}\right) + \cos\left(\frac{2\pi n}{1997}\right)\right)^2 + \left(\sin\left(\frac{2\pi m}{1997}\right) + \sin\left(\frac{2\pi n}{1997}\right)\right)^2}</math> | ||
:<math>=\sqrt{2 + 2\cos\left(\frac{2\pi m}{1997}\right)\cos\left(\frac{2\pi n}{1997}\right) + 2\sin\left(\frac{2\pi m}{1997}\right)\sin\left(\frac{2\pi n}{1997}\right)}</math> | :<math>=\sqrt{2 + 2\cos\left(\frac{2\pi m}{1997}\right)\cos\left(\frac{2\pi n}{1997}\right) + 2\sin\left(\frac{2\pi m}{1997}\right)\sin\left(\frac{2\pi n}{1997}\right)}</math> | ||
Line 15: | Line 17: | ||
We need <math>\cos \left(\frac{2\pi m}{1997}\right)\cos \left(\frac{2\pi n}{1997}\right) + \sin \left(\frac{2\pi m}{1997}\right)\sin \left(\frac{2\pi n}{1997}\right) \ge \frac{\sqrt{3}}{2}</math>. The [[Trigonometric identities|cosine difference identity]] simplifies that to <math>\cos\left(\frac{2\pi m}{1997} - \frac{2\pi n}{1997}\right) \ge \frac{\sqrt{3}}{2}</math>. Thus, <math>|m - n| \le \frac{\pi}{6} \cdot \frac{1997}{2 \pi} = \lfloor \frac{1997}{12} \rfloor =166</math>. | We need <math>\cos \left(\frac{2\pi m}{1997}\right)\cos \left(\frac{2\pi n}{1997}\right) + \sin \left(\frac{2\pi m}{1997}\right)\sin \left(\frac{2\pi n}{1997}\right) \ge \frac{\sqrt{3}}{2}</math>. The [[Trigonometric identities|cosine difference identity]] simplifies that to <math>\cos\left(\frac{2\pi m}{1997} - \frac{2\pi n}{1997}\right) \ge \frac{\sqrt{3}}{2}</math>. Thus, <math>|m - n| \le \frac{\pi}{6} \cdot \frac{1997}{2 \pi} = \lfloor \frac{1997}{12} \rfloor =166</math>. | ||
− | Therefore, <math> | + | Therefore, <math>m</math> and <math>n</math> cannot be more than <math>166</math> away from each other. This means that for a given value of <math>m</math>, there are <math>332</math> values for <math>n</math> that satisfy the inequality; <math>166</math> of them <math>> m</math>, and <math>166</math> of them <math>< m</math>. Since <math>m</math> and <math>n</math> must be distinct, <math>n</math> can have <math>1996</math> possible values. Therefore, the probability is <math>\frac{332}{1996}=\frac{83}{499}</math>. The answer is then <math>499+83=582</math>. |
+ | |||
+ | === Solution 2 === | ||
+ | The solutions of the equation <math>z^{1997} = 1</math> are the 1997th [[roots of unity]] and are equal to <math>\cos\left(\frac {2\pi k}{1997}\right) + i\sin\left(\frac {2\pi k}{1997}\right)</math> for <math>k = 0,1,\ldots,1996.</math> They are also located at the vertices of a regular 1997-gon that is centered at the origin in the complex plane. | ||
+ | |||
+ | [[Without loss of generality]], let <math>v = 1.</math> Then | ||
+ | <cmath> | ||
+ | \begin{eqnarray*} |v + w|^2 & = & |\cos\left(\frac {2\pi k}{1997}\right) + i\sin\left(\frac {2\pi k}{1997}\right) + 1|^2 \ | ||
+ | & = & \left|\left[\cos\left(\frac {2\pi k}{1997}\right) + 1\right] + i\sin\left(\frac {2\pi k}{1997}\right)\right|^2 \ | ||
+ | & = & \cos^2\left(\frac {2\pi k}{1997}\right) + 2\cos\left(\frac {2\pi k}{1997}\right) + 1 + \sin^2\left(\frac {2\pi k}{1997}\right) \ | ||
+ | & = & 2 + 2\cos\left(\frac {2\pi k}{1997}\right) \end{eqnarray*} | ||
+ | </cmath> | ||
+ | |||
+ | We want <math>|v + w|^2\ge 2 + \sqrt {3}.</math> From what we just obtained, this is equivalent to <math>\cos\left(\frac {2\pi k}{1997}\right)\ge \frac {\sqrt {3}}2.</math> This occurs when <math>\frac {\pi}6\ge \frac {2\pi k}{1997}\ge - \frac {\pi}6</math> which is satisfied by <math>k = 166,165,\ldots, - 165, - 166</math> (we don't include 0 because that corresponds to <math>v</math>). So out of the 1996 possible <math>k</math>, 332 work. Thus, <math>m/n = 332/1996 = 83/499.</math> So our answer is <math>83 + 499 = 582.</math> | ||
== See also == | == See also == |
Revision as of 22:15, 23 November 2007
Problem
Let and be distinct, randomly chosen roots of the equation . Let be the probability that , where and are relatively prime positive integers. Find .
Contents
[hide]Solution
Solution 1
By De Moivre's Theorem, we find that ()
Now, let be the root corresponding to , and let be the root corresponding to . The magnitude of is therefore:
We need . The cosine difference identity simplifies that to . Thus, .
Therefore, and cannot be more than away from each other. This means that for a given value of , there are values for that satisfy the inequality; of them , and of them . Since and must be distinct, can have possible values. Therefore, the probability is . The answer is then .
Solution 2
The solutions of the equation are the 1997th roots of unity and are equal to for They are also located at the vertices of a regular 1997-gon that is centered at the origin in the complex plane.
Without loss of generality, let Then
We want From what we just obtained, this is equivalent to This occurs when which is satisfied by (we don't include 0 because that corresponds to ). So out of the 1996 possible , 332 work. Thus, So our answer is
See also
1997 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |