PREPARING FOR THE AMC 10?
Join fantastic instructors and top-scoring students in our online AMC 10 Problem Series course.
CHECK SCHEDULE

Difference between revisions of "2019 AMC 10B Problems"

(Problem 5)
m (Problem 10)
(32 intermediate revisions by 20 users not shown)
Line 1: Line 1:
 +
{{AMC10 Problems|year=2019|ab=B}}
 +
 
==Problem 1==
 
==Problem 1==
  
Line 9: Line 11:
 
==Problem 2==
 
==Problem 2==
  
Consider the statement, "If <math>n</math> is not prime, then <math>n-2</math> is prime." Which of the following values of <math>n</math> is a counterexample to this statement.
+
Consider the statement, "If <math>n</math> is not prime, then <math>n-2</math> is prime." Which of the following values of <math>n</math> is a counterexample to this statement?
  
 
<math>\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27</math>
 
<math>\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27</math>
Line 37: Line 39:
 
==Problem 5==
 
==Problem 5==
  
Triangle <math>ABC</math> lies in the first quadrant. Points <math>A</math>, <math>B</math>, and <math>C</math> are reflected across the line <math>y=x</math> to points <math>A'</math>, <math>B'</math>, and <math>C'</math>, respectively. Assume that none of the vertices of the triangle lie on the line <math>y=x</math>. Which of the following statements is not always true?
+
Triangle <math>ABC</math> lies in the first quadrant. Points <math>A</math>, <math>B</math>, and <math>C</math> are reflected across the line <math>y=x</math> to points <math>A'</math>, <math>B'</math>, and <math>C'</math>, respectively. Assume that none of the vertices of the triangle lie on the line <math>y=x</math>. Which of the following statements is <i><u>not</u></i> always true?
 +
 
 +
<math>\textbf{(A) }</math> Triangle <math>A'B'C'</math> lies in the first quadrant.
 +
 
 +
<math>\textbf{(B) }</math> Triangles <math>ABC</math> and <math>A'B'C'</math> have the same area.
 +
 
 +
<math>\textbf{(C) }</math> The slope of line <math>AA'</math> is <math>-1</math>.
 +
 
 +
<math>\textbf{(D) }</math> The slopes of lines <math>AA'</math> and <math>CC'</math> are the same.
 +
 
 +
<math>\textbf{(E) }</math> Lines <math>AB</math> and <math>A'B'</math> are perpendicular to each other.
  
<math>\textbf{(A) } \ text{Triangle </math>A'B'C'<math> lies in the first quadrant.}
 
\qquad\textbf{(B) } 14
 
\qquad\textbf{(C) } 22
 
\qquad\textbf{(D) } 23
 
\qquad\textbf{(E) } 27</math>
 
 
[[2019 AMC 10B Problems/Problem 5|Solution]]
 
[[2019 AMC 10B Problems/Problem 5|Solution]]
  
Line 56: Line 63:
 
==Problem 7==
 
==Problem 7==
  
Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either 12 pieces of red candy, 14 pieces of green candy, 15 pieces of blue candy, or <math>n</math> pieces of purple candy. A piece of purple candy costs 20 cents. What is the smallest possible value of <math>n</math>?
+
Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either <math>12</math> pieces of red candy, <math>14</math> pieces of green candy, <math>15</math> pieces of blue candy, or <math>n</math> pieces of purple candy. A piece of purple candy costs <math>20</math> cents. What is the smallest possible value of <math>n</math>?
  
 
<math>\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28</math>
 
<math>\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28</math>
Line 63: Line 70:
  
 
==Problem 8==
 
==Problem 8==
 +
 +
The figure below shows a square and four equilateral triangles, with each triangle having a side lying on a side of the square, such that each triangle has side length <math>2</math> and the third vertices of the triangles meet at the center of the square. The region inside the square but outside the triangles is shaded. What is the area of the shaded region?
 +
 +
<asy>
 +
pen white = gray(1);
 +
pen gray = gray(0.5);
 +
draw((0,0)--(2sqrt(3),0)--(2sqrt(3),2sqrt(3))--(0,2sqrt(3))--cycle);
 +
fill((0,0)--(2sqrt(3),0)--(2sqrt(3),2sqrt(3))--(0,2sqrt(3))--cycle, gray);
 +
draw((sqrt(3)-1,0)--(sqrt(3),sqrt(3))--(sqrt(3)+1,0)--cycle);
 +
fill((sqrt(3)-1,0)--(sqrt(3),sqrt(3))--(sqrt(3)+1,0)--cycle, white);
 +
draw((sqrt(3)-1,2sqrt(3))--(sqrt(3),sqrt(3))--(sqrt(3)+1,2sqrt(3))--cycle);
 +
fill((sqrt(3)-1,2sqrt(3))--(sqrt(3),sqrt(3))--(sqrt(3)+1,2sqrt(3))--cycle, white);
 +
draw((0,sqrt(3)-1)--(sqrt(3),sqrt(3))--(0,sqrt(3)+1)--cycle);
 +
fill((0,sqrt(3)-1)--(sqrt(3),sqrt(3))--(0,sqrt(3)+1)--cycle, white);
 +
draw((2sqrt(3),sqrt(3)-1)--(sqrt(3),sqrt(3))--(2sqrt(3),sqrt(3)+1)--cycle);
 +
fill((2sqrt(3),sqrt(3)-1)--(sqrt(3),sqrt(3))--(2sqrt(3),sqrt(3)+1)--cycle, white);
 +
</asy>
 +
 +
<math>\textbf{(A) } 4 \qquad \textbf{(B) } 12 - 4\sqrt{3} \qquad \textbf{(C) } 3\sqrt{3}\qquad \textbf{(D) } 4\sqrt{3} \qquad \textbf{(E) } 16 - 4\sqrt{3}</math>
  
 
[[2019 AMC 10B Problems/Problem 8|Solution]]
 
[[2019 AMC 10B Problems/Problem 8|Solution]]
Line 70: Line 96:
 
The function <math>f</math> is defined by <cmath>f(x) = \lfloor|x|\rfloor - |\lfloor x \rfloor|</cmath>for all real numbers <math>x</math>, where <math>\lfloor r \rfloor</math> denotes the greatest integer less than or equal to the real number <math>r</math>. What is the range of <math>f</math>?
 
The function <math>f</math> is defined by <cmath>f(x) = \lfloor|x|\rfloor - |\lfloor x \rfloor|</cmath>for all real numbers <math>x</math>, where <math>\lfloor r \rfloor</math> denotes the greatest integer less than or equal to the real number <math>r</math>. What is the range of <math>f</math>?
  
<math>\textbf{(A) } \{-1, 0\} \qquad\textbf{(B) } \text{The set of nonpositive integers} \qquad\textbf{(C) } \{-1, 0, 1\} \qquad\textbf{(D) } \{0\} \qquad\textbf{(E) } \text{The set of nonnegative integers} </math>
+
<math>\textbf{(A) }</math>  <math>\{-1, 0\}</math>
 +
 
 +
<math>\textbf{(B) }</math>  <math>\text{The set of nonpositive integers} </math>
 +
 
 +
<math>\textbf{(C) }</math>  <math>\{-1, 0, 1\}</math>
 +
 
 +
<math>\textbf{(D) }</math>  <math>\{0\} </math>
 +
 
 +
<math>\textbf{(E) }</math>  <math>\text{The set of nonnegative integers} </math>
  
 
[[2019 AMC 10B Problems/Problem 9|Solution]]
 
[[2019 AMC 10B Problems/Problem 9|Solution]]
Line 83: Line 117:
  
 
==Problem 11==
 
==Problem 11==
Two jars each contain the same number of marbles, and every marble is either blue or green. In Jar 1 the ratio of blue to green marbles is 9:1, and the ratio of blue to green marbles in Jar 2 is 8:1. There are 95 green marbles in all. How many more blue marbles are in Jar 1 than in Jar 2?
+
Two jars each contain the same number of marbles, and every marble is either blue or green. In Jar <math>1</math> the ratio of blue to green marbles is <math>9:1</math>, and the ratio of blue to green marbles in Jar <math>2</math> is <math>8:1</math>. There are <math>95</math> green marbles in all. How many more blue marbles are in Jar <math>1</math> than in Jar <math>2</math>?
  
 
<math>\textbf{(A) } 5
 
<math>\textbf{(A) } 5
Line 114: Line 148:
  
 
==Problem 14==
 
==Problem 14==
 +
The base-ten representation for <math>19!</math> is <math>121,6T5,100,40M,832,H00</math>, where <math>T</math>, <math>M</math>, and <math>H</math> denote digits that are not given. What is <math>T+M+H</math>?
 +
 +
<math>\textbf{(A) }3 \qquad\textbf{(B) }8 \qquad\textbf{(C) }12 \qquad\textbf{(D) }14 \qquad\textbf{(E) } 17 </math>
  
 
[[2019 AMC 10B Problems/Problem 14|Solution]]
 
[[2019 AMC 10B Problems/Problem 14|Solution]]
  
 
==Problem 15==
 
==Problem 15==
Two right triangles, <math>T_1</math> and <math>T_2</math>, have areas of 1 and 2, respectively. One side length of one triangle is congruent to a different side length in the other, and another side length of the first triangle is congruent to yet another side length in the other. What is the product of the third side lengths of <math>T_1</math> and <math>T_2</math>?
+
Right triangles <math>T_1</math> and <math>T_2</math> have areas 1 and 2, respectively. A side of <math>T_1</math> is congruent to a side of <math>T_2</math>, and a different side of <math>T_1</math> is congruent to a different side of <math>T_2</math>. What is the square of the product of the other (third) sides of <math>T_1</math> and <math>T_2</math>?
  
 
<math>\textbf{(A) } \frac{28}{3} \qquad\textbf{(B) }10\qquad\textbf{(C) } \frac{32}{3} \qquad\textbf{(D) } \frac{34}{3} \qquad\textbf{(E) }12</math>
 
<math>\textbf{(A) } \frac{28}{3} \qquad\textbf{(B) }10\qquad\textbf{(C) } \frac{32}{3} \qquad\textbf{(D) } \frac{34}{3} \qquad\textbf{(E) }12</math>
Line 199: Line 236:
  
 
==Problem 22==
 
==Problem 22==
 +
 +
Raashan, Sylvia, and Ted play the following game. Each starts with <math> \$1</math>. A bell rings every <math>15</math> seconds, at which time each of the players who currently have money simultaneously chooses one of the other two players independently and at random and gives <math>\$1</math> to that player. What is the probability that after the bell has rung <math>2019</math> times, each player will have <math>\$1</math>? (For example, Raashan and Ted may each decide to give <math>\$1</math> to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have <math>\$0</math>, Sylvia will have <math>\$2</math>, and Ted will have <math>\$1</math>, and that is the end of the first round of play. In the second round Raashan has no money to give, but Sylvia and Ted might choose each other to give their <math> \$1</math> to, and the holdings will be the same at the end of the second round.)
 +
 +
<math>\textbf{(A) } \frac{1}{7} \qquad\textbf{(B) } \frac{1}{4} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{1}{2} \qquad\textbf{(E) } \frac{2}{3}</math>
  
 
[[2019 AMC 10B Problems/Problem 22|Solution]]
 
[[2019 AMC 10B Problems/Problem 22|Solution]]
Line 217: Line 258:
 
<cmath>x_m\leq 4+\frac{1}{2^{20}}.</cmath>In which of the following intervals does <math>m</math> lie?
 
<cmath>x_m\leq 4+\frac{1}{2^{20}}.</cmath>In which of the following intervals does <math>m</math> lie?
  
<math>\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]</math>
+
<math>\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty)</math>
  
 
[[2019 AMC 10B Problems/Problem 24|Solution]]
 
[[2019 AMC 10B Problems/Problem 24|Solution]]
Line 228: Line 269:
  
 
[[2019 AMC 10B Problems/Problem 25|Solution]]
 
[[2019 AMC 10B Problems/Problem 25|Solution]]
 +
 +
==See also==
 +
{{AMC10 box|year=2019|ab=B|before=[[2019 AMC 10A Problems]]|after=[[2020 AMC 10A Problems]]}}
 +
{{MAA Notice}}

Revision as of 22:52, 12 November 2023

2019 AMC 10B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Alicia had two containers. The first was $\tfrac{5}{6}$ full of water and the second was empty. She poured all the water from the first container into the second container, at which point the second container was $\tfrac{3}{4}$ full of water. What is the ratio of the volume of the first container to the volume of the second container?

$\textbf{(A) } \frac{5}{8} \qquad \textbf{(B) } \frac{4}{5} \qquad \textbf{(C) } \frac{7}{8} \qquad \textbf{(D) } \frac{9}{10} \qquad \textbf{(E) } \frac{11}{12}$

Solution

Problem 2

Consider the statement, "If $n$ is not prime, then $n-2$ is prime." Which of the following values of $n$ is a counterexample to this statement?

$\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27$

Solution

Problem 3

In a high school with $500$ students, $40\%$ of the seniors play a musical instrument, while $30\%$ of the non-seniors do not play a musical instrument. In all, $46.8\%$ of the students do not play a musical instrument. How many non-seniors play a musical instrument?

$\textbf{(A) } 66 \qquad\textbf{(B) } 154 \qquad\textbf{(C) } 186 \qquad\textbf{(D) } 220 \qquad\textbf{(E) } 266$

Solution

Problem 4

All lines with equation $ax+by=c$ such that $a,b,c$ form an arithmetic progression pass through a common point. What are the coordinates of that point?

$\textbf{(A) } (-1,2) \qquad\textbf{(B) } (0,1) \qquad\textbf{(C) } (1,-2) \qquad\textbf{(D) } (1,0) \qquad\textbf{(E) } (1,2)$

Solution

Problem 5

Triangle $ABC$ lies in the first quadrant. Points $A$, $B$, and $C$ are reflected across the line $y=x$ to points $A'$, $B'$, and $C'$, respectively. Assume that none of the vertices of the triangle lie on the line $y=x$. Which of the following statements is not always true?

$\textbf{(A) }$ Triangle $A'B'C'$ lies in the first quadrant.

$\textbf{(B) }$ Triangles $ABC$ and $A'B'C'$ have the same area.

$\textbf{(C) }$ The slope of line $AA'$ is $-1$.

$\textbf{(D) }$ The slopes of lines $AA'$ and $CC'$ are the same.

$\textbf{(E) }$ Lines $AB$ and $A'B'$ are perpendicular to each other.

Solution

Problem 6

There is a real $n$ such that $(n+1)! + (n+2)! = n! \cdot 440$. What is the sum of the digits of $n$?

$\textbf{(A) }3\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12$

Solution

Problem 7

Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either $12$ pieces of red candy, $14$ pieces of green candy, $15$ pieces of blue candy, or $n$ pieces of purple candy. A piece of purple candy costs $20$ cents. What is the smallest possible value of $n$?

$\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28$

Solution

Problem 8

The figure below shows a square and four equilateral triangles, with each triangle having a side lying on a side of the square, such that each triangle has side length $2$ and the third vertices of the triangles meet at the center of the square. The region inside the square but outside the triangles is shaded. What is the area of the shaded region?

[asy] pen white = gray(1); pen gray = gray(0.5); draw((0,0)--(2sqrt(3),0)--(2sqrt(3),2sqrt(3))--(0,2sqrt(3))--cycle); fill((0,0)--(2sqrt(3),0)--(2sqrt(3),2sqrt(3))--(0,2sqrt(3))--cycle, gray); draw((sqrt(3)-1,0)--(sqrt(3),sqrt(3))--(sqrt(3)+1,0)--cycle); fill((sqrt(3)-1,0)--(sqrt(3),sqrt(3))--(sqrt(3)+1,0)--cycle, white); draw((sqrt(3)-1,2sqrt(3))--(sqrt(3),sqrt(3))--(sqrt(3)+1,2sqrt(3))--cycle); fill((sqrt(3)-1,2sqrt(3))--(sqrt(3),sqrt(3))--(sqrt(3)+1,2sqrt(3))--cycle, white); draw((0,sqrt(3)-1)--(sqrt(3),sqrt(3))--(0,sqrt(3)+1)--cycle); fill((0,sqrt(3)-1)--(sqrt(3),sqrt(3))--(0,sqrt(3)+1)--cycle, white); draw((2sqrt(3),sqrt(3)-1)--(sqrt(3),sqrt(3))--(2sqrt(3),sqrt(3)+1)--cycle); fill((2sqrt(3),sqrt(3)-1)--(sqrt(3),sqrt(3))--(2sqrt(3),sqrt(3)+1)--cycle, white); [/asy]

$\textbf{(A) } 4 \qquad \textbf{(B) } 12 - 4\sqrt{3} \qquad \textbf{(C) } 3\sqrt{3}\qquad \textbf{(D) } 4\sqrt{3} \qquad \textbf{(E) } 16 - 4\sqrt{3}$

Solution

Problem 9

The function $f$ is defined by \[f(x) = \lfloor|x|\rfloor - |\lfloor x \rfloor|\]for all real numbers $x$, where $\lfloor r \rfloor$ denotes the greatest integer less than or equal to the real number $r$. What is the range of $f$?

$\textbf{(A) }$ $\{-1, 0\}$

$\textbf{(B) }$ $\text{The set of nonpositive integers}$

$\textbf{(C) }$ $\{-1, 0, 1\}$

$\textbf{(D) }$ $\{0\}$

$\textbf{(E) }$ $\text{The set of nonnegative integers}$

Solution

Problem 10

In a given plane, points $A$ and $B$ are $10$ units apart. How many points $C$ are there in the plane such that the perimeter of $\triangle ABC$ is $50$ units and the area of $\triangle ABC$ is $100$ square units?

$\textbf{(A) }0\qquad\textbf{(B) }2\qquad\textbf{(C) }4\qquad\textbf{(D) }8\qquad\textbf{(E) }\text{infinitely many}$

Solution

Problem 11

Two jars each contain the same number of marbles, and every marble is either blue or green. In Jar $1$ the ratio of blue to green marbles is $9:1$, and the ratio of blue to green marbles in Jar $2$ is $8:1$. There are $95$ green marbles in all. How many more blue marbles are in Jar $1$ than in Jar $2$?

$\textbf{(A) } 5 \qquad\textbf{(B) } 10 \qquad\textbf{(C) } 25 \qquad\textbf{(D) } 45 \qquad\textbf{(E) } 50$

Solution

Problem 12

What is the greatest possible sum of the digits in the base-seven representation of a positive integer less than $2019$?

$\textbf{(A) } 11 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 22 \qquad\textbf{(D) } 23 \qquad\textbf{(E) } 27$

Solution

Problem 13

What is the sum of all real numbers $x$ for which the median of the numbers $4,6,8,17,$ and $x$ is equal to the mean of those five numbers?

$\textbf{(A) } -5 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } \frac{15}{4} \qquad\textbf{(E) } \frac{35}{4}$

Solution

Problem 14

The base-ten representation for $19!$ is $121,6T5,100,40M,832,H00$, where $T$, $M$, and $H$ denote digits that are not given. What is $T+M+H$?

$\textbf{(A) }3 \qquad\textbf{(B) }8 \qquad\textbf{(C) }12 \qquad\textbf{(D) }14 \qquad\textbf{(E) } 17$

Solution

Problem 15

Right triangles $T_1$ and $T_2$ have areas 1 and 2, respectively. A side of $T_1$ is congruent to a side of $T_2$, and a different side of $T_1$ is congruent to a different side of $T_2$. What is the square of the product of the other (third) sides of $T_1$ and $T_2$?

$\textbf{(A) } \frac{28}{3} \qquad\textbf{(B) }10\qquad\textbf{(C) } \frac{32}{3} \qquad\textbf{(D) } \frac{34}{3} \qquad\textbf{(E) }12$

Solution

Problem 16

In $\triangle ABC$ with a right angle at $C,$ point $D$ lies in the interior of $\overline{AB}$ and point $E$ lies in the interior of $\overline{BC}$ so that $AC=CD,$ $DE=EB,$ and the ratio $AC:DE=4:3.$ What is the ratio $AD:DB?$

$\textbf{(A) } 2:3 \qquad\textbf{(B) } 2:\sqrt{5} \qquad\textbf{(C) } 1:1 \qquad\textbf{(D) } 3:\sqrt{5} \qquad\textbf{(E) } 3:2$

Solution

Problem 17

A red ball and a green ball are randomly and independently tossed into bins numbered with positive integers so that for each ball, the probability that it is tossed into bin $k$ is $2^{-k}$ for $k=1,2,3,\ldots.$ What is the probability that the red ball is tossed into a higher-numbered bin than the green ball?

$\textbf{(A) } \frac{1}{4} \qquad\textbf{(B) } \frac{2}{7} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{3}{8} \qquad\textbf{(E) } \frac{3}{7}$

Solution

Problem 18

Henry decides one morning to do a workout, and he walks $\tfrac{3}{4}$ of the way from his home to his gym. The gym is $2$ kilometers away from Henry's home. At that point, he changes his mind and walks $\tfrac{3}{4}$ of the way from where he is back toward home. When he reaches that point, he changes his mind again and walks $\tfrac{3}{4}$ of the distance from there back toward the gym. If Henry keeps changing his mind when he has walked $\tfrac{3}{4}$ of the distance toward either the gym or home from the point where he last changed his mind, he will get very close to walking back and forth between a point $A$ kilometers from home and a point $B$ kilometers from home. What is $|A-B|$?

$\textbf{(A) } \frac{2}{3} \qquad \textbf{(B) } 1 \qquad \textbf{(C) } 1\frac{1}{5} \qquad \textbf{(D) } 1\frac{1}{4} \qquad \textbf{(E) } 1\frac{1}{2}$

Solution

Problem 19

Let $S$ be the set of all positive integer divisors of $100,000.$ How many numbers are the product of two distinct elements of $S?$

$\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121$

Solution

Problem 20

As shown in the figure, line segment $\overline{AD}$ is trisected by points $B$ and $C$ so that $AB=BC=CD=2.$ Three semicircles of radius $1,$ $\overarc{AEB},\overarc{BFC},$ and $\overarc{CGD},$ have their diameters on $\overline{AD},$ and are tangent to line $EG$ at $E,F,$ and $G,$ respectively. A circle of radius $2$ has its center on $F.$ The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form \[\frac{a}{b}\cdot\pi-\sqrt{c}+d,\]where $a,b,c,$ and $d$ are positive integers and $a$ and $b$ are relatively prime. What is $a+b+c+d$?

[asy] size(6cm); filldraw(circle((0,0),2), gray(0.7)); filldraw(arc((0,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((-2,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((2,-1),1,0,180) -- cycle, gray(1.0)); dot((-3,-1)); label("$A$",(-3,-1),S); dot((-2,0)); label("$E$",(-2,0),NW); dot((-1,-1)); label("$B$",(-1,-1),S); dot((0,0)); label("$F$",(0,0),N); dot((1,-1)); label("$C$",(1,-1), S); dot((2,0)); label("$G$", (2,0),NE); dot((3,-1)); label("$D$", (3,-1), S); [/asy] $\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16\qquad\textbf{(E) } 17$

Solution

Problem 21

Debra flips a fair coin repeatedly, keeping track of how many heads and how many tails she has seen in total, until she gets either two heads in a row or two tails in a row, at which point she stops flipping. What is the probability that she gets two heads in a row but she sees a second tail before she sees a second head?

$\textbf{(A) } \frac{1}{36} \qquad \textbf{(B) } \frac{1}{24} \qquad \textbf{(C) } \frac{1}{18} \qquad \textbf{(D) } \frac{1}{12} \qquad \textbf{(E) } \frac{1}{6}$

Solution

Problem 22

Raashan, Sylvia, and Ted play the following game. Each starts with $$1$. A bell rings every $15$ seconds, at which time each of the players who currently have money simultaneously chooses one of the other two players independently and at random and gives $$1$ to that player. What is the probability that after the bell has rung $2019$ times, each player will have $$1$? (For example, Raashan and Ted may each decide to give $$1$ to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have $$0$, Sylvia will have $$2$, and Ted will have $$1$, and that is the end of the first round of play. In the second round Raashan has no money to give, but Sylvia and Ted might choose each other to give their $$1$ to, and the holdings will be the same at the end of the second round.)

$\textbf{(A) } \frac{1}{7} \qquad\textbf{(B) } \frac{1}{4} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{1}{2} \qquad\textbf{(E) } \frac{2}{3}$

Solution

Problem 23

Points $A(6,13)$ and $B(12,11)$ lie on circle $\omega$ in the plane. Suppose that the tangent lines to $\omega$ at $A$ and $B$ intersect at a point on the $x$-axis. What is the area of $\omega$?

$\textbf{(A) }\frac{83\pi}{8}\qquad\textbf{(B) }\frac{21\pi}{2}\qquad\textbf{(C) } \frac{85\pi}{8}\qquad\textbf{(D) }\frac{43\pi}{4}\qquad\textbf{(E) }\frac{87\pi}{8}$

Solution

Problem 24

Define a sequence recursively by $x_0=5$ and \[x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}\]for all nonnegative integers $n.$ Let $m$ be the least positive integer such that \[x_m\leq 4+\frac{1}{2^{20}}.\]In which of the following intervals does $m$ lie?

$\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty)$

Solution

Problem 25

How many sequences of $0$s and $1$s of length $19$ are there that begin with a $0$, end with a $0$, contain no two consecutive $0$s, and contain no three consecutive $1$s?

$\textbf{(A) }55\qquad\textbf{(B) }60\qquad\textbf{(C) }65\qquad\textbf{(D) }70\qquad\textbf{(E) }75$

Solution

See also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
2019 AMC 10A Problems
Followed by
2020 AMC 10A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png