Difference between revisions of "2023 AMC 12B Problems/Problem 25"
(→Solution 2 (In Progress)) |
(→Solution 2 (In Progress)) |
||
Line 285: | Line 285: | ||
draw(anglemark(U,D,O)); | draw(anglemark(U,D,O)); | ||
− | label("$54^{\circ}$", D, | + | label("$54^{\circ}$", D,NE); |
+ | |||
+ | draw(anglemark(U,O,D)); | ||
+ | |||
+ | label("$36^{\circ}$", O,SW); | ||
Revision as of 15:58, 4 December 2023
- The following problem is from both the 2023 AMC 10B #25 and 2023 AMC 12B #25, so both problems redirect to this page.
Contents
Problem
A regular pentagon with area is printed on paper and cut out. The five vertices of the pentagon are folded into the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?
Solution 1
Let the original pentagon be centered at . The dashed lines represent the fold lines. WLOG, let's focus on vertex .
Since is folded onto , where is the intersection of and the creaseline between and . Note that the inner pentagon is regular, and therefore similar to the original pentagon, due to symmetry.
Because of their similarity, the ratio of the inner pentagon's area to that of the outer pentagon can be represented by
Option 1: Knowledge
Remember that .
Option 2: Angle Identities
Let the inner pentagon be .
-Dissmo
Solution 2 (In Progress)
We can find the area of the red pentagon by taking the area of the total pentagon and subtracting the area outside the red pentagon.
The area outside the red pentagon is the sum of the larger isosceles triangles, but this double counts the overlapping regions of the small isosceles triangles, so we have to subtract those out.
We have
Lets focus on finding the area of each individual triangle:
Notice that we have no information about the side length, so instead we let the side length be . Now we can drop an altitude from to the base of the triangle, and we know this altitude must split the base of the pentagon in half, so we can create a right triangle. Furthermore, draw a line from to . This must bisect angle which is degrees, so we create triangles. We can label our sides and angles:
~KingRavi
Solution 3
Let and be the circumradius of the big and small pentagon, respectively. Let be the apothem of the smaller pentagon and and be the areas of the smaller and larger pentagon, respectively.
From the diagram: ~Technodoggo
Solution 4
Interestingly, we find that the pentagon we need is the one that is represented by the intersection of perpendicular bisectors of the connection from the center of the pentagon to one vertex. Through similar triangles and the golden ratio, we find that the side length ratio of the two pentagons is Thus, the answer is . ~andliu766
Solution 5 (answer choices (not rigorous))
After drawing a decent diagram, we can see that the area of the inner pentagon is quite a bit smaller than half the area of the larger pentagon.
Then, we can estimate the values of the answers and choose one that seems the closest to the smallest answer.
We know that , so we'll use for our estimations. The area of the original pentagon is , so half of it is roughly .
A: clearly, this is wrong because it is greater than half the area of the pentagon.
B: This answer could be right.
C: This too.
D: This answer is wrong, as it assumes that the area of the inner pentagon is exactly half the area of the larger one.
E: This answer could be right.
But, from our diagram, assume that the area of the pentagon is significantly less than the area half of the larger pentagon, so we choose the smallest answer choice, giving us . ~erics118
Supplement (Calculating sin54/cos36 from Scratch)
Method 1:
Construct golden ratio triangle with , and with , . WLOG, let , , .
Method 2:
As explained here,
Video Solution 1 by SpreadTheMathLove
https://www.youtube.com/watch?v=ROVjN3oYLbQ
Video Solution 2 by OmegaLearn
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2023 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.