GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2006 AMC 10B Problems"

(Directing solution links to AMC 10 B solutions not AMC 12 B solutions)
m (Problem 14)
 
(19 intermediate revisions by 16 users not shown)
Line 1: Line 1:
 +
{{AMC10 Problems|year=2006|ab=B}}
 
== Problem 1 ==
 
== Problem 1 ==
 
What is <math> (-1)^{1} + (-1)^{2} + ... + (-1)^{2006} </math> ?
 
What is <math> (-1)^{1} + (-1)^{2} + ... + (-1)^{2006} </math> ?
Line 7: Line 8:
  
 
== Problem 2 ==
 
== Problem 2 ==
For real numbers <math>x</math> and <math>y</math>, define <math> x \spadesuit y = (x+y)(x-y) </math>. What is <math> 3 \spadesuit (4 \spadesuit 5) </math>?
+
For real numbers <math>x</math> and <math>y</math>, define <math> x \mathop{\spadesuit} y = (x+y)(x-y) </math>. What is <math> 3 \mathop{\spadesuit} (4 \mathop{\spadesuit} 5) </math>?
  
 
<math> \mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72 </math>
 
<math> \mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72 </math>
Line 39: Line 40:
 
A region is bounded by semicircular arcs constructed on the side of a square whose sides measure <math> \frac{2}{\pi} </math>, as shown. What is the perimeter of this region?  
 
A region is bounded by semicircular arcs constructed on the side of a square whose sides measure <math> \frac{2}{\pi} </math>, as shown. What is the perimeter of this region?  
  
[[Image:2006amc10b06.gif]]
+
<asy>
 +
unitsize(1cm);
 +
defaultpen(.8);
 +
 
 +
filldraw( circle( (0,1), 1 ), lightgray, black );
 +
filldraw( circle( (0,-1), 1 ), lightgray, black );
 +
filldraw( circle( (1,0), 1 ), lightgray, black );
 +
filldraw( circle( (-1,0), 1 ), lightgray, black );
 +
filldraw( (-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle, lightgray, black );
 +
</asy>
  
 
<math> \mathrm{(A) \ } \frac{4}{\pi}\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } \frac{8}{\pi}\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } \frac{16}{\pi} </math>
 
<math> \mathrm{(A) \ } \frac{4}{\pi}\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } \frac{8}{\pi}\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } \frac{16}{\pi} </math>
Line 46: Line 56:
  
 
== Problem 7 ==
 
== Problem 7 ==
Which of the folowing is equivalent to <math> \sqrt{\frac{x}{1-\frac{x-1}{x}}} </math> when <math> x < 0 </math>  
+
Which of the following is equivalent to <math> \sqrt{\frac{x}{1-\frac{x-1}{x}}} </math> when <math> x < 0 </math>?
  
 
<math> \mathrm{(A) \ } -x\qquad \mathrm{(B) \ } x\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } \sqrt{\frac{x}{2}}\qquad \mathrm{(E) \ } x\sqrt{-1} </math>
 
<math> \mathrm{(A) \ } -x\qquad \mathrm{(B) \ } x\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } \sqrt{\frac{x}{2}}\qquad \mathrm{(E) \ } x\sqrt{-1} </math>
Line 55: Line 65:
 
A square of area 40 is inscribed in a semicircle as shown. What is the area of the semicircle?  
 
A square of area 40 is inscribed in a semicircle as shown. What is the area of the semicircle?  
  
[[Image:2006amc10b08.gif]]
+
<asy>
 +
unitsize(1cm);
 +
defaultpen(.8);
 +
 
 +
draw( (-sqrt(5),0) -- (sqrt(5),0), dashed );
 +
draw( (-1,0)--(-1,2)--(1,2)--(1,0)--cycle );
 +
draw( arc( (0,0), sqrt(5), 0, 180 ) );
 +
</asy>
  
 
<math> \mathrm{(A) \ } 20\pi\qquad \mathrm{(B) \ } 25\pi\qquad \mathrm{(C) \ } 30\pi\qquad \mathrm{(D) \ } 40\pi\qquad \mathrm{(E) \ } 50\pi </math>
 
<math> \mathrm{(A) \ } 20\pi\qquad \mathrm{(B) \ } 25\pi\qquad \mathrm{(C) \ } 30\pi\qquad \mathrm{(D) \ } 40\pi\qquad \mathrm{(E) \ } 50\pi </math>
Line 62: Line 79:
  
 
== Problem 9 ==
 
== Problem 9 ==
Francesca uses 100 grams of lemon juce, 100 grams of sugar, and 400 grams of water to make lemonade. There are 25 calories in 100 grams of lemon juice and 386 calories in 100 grams of sugar. Water contains no calories. How many calories are in 200 grams of her lemonade?  
+
Francesca uses 100 grams of lemon juice, 100 grams of sugar, and 400 grams of water to make lemonade. There are 25 calories in 100 grams of lemon juice and 386 calories in 100 grams of sugar. Water contains no calories. How many calories are in 200 grams of her lemonade?  
  
 
<math> \mathrm{(A) \ } 129\qquad \mathrm{(B) \ } 137\qquad \mathrm{(C) \ } 174\qquad \mathrm{(D) \ } 233\qquad \mathrm{(E) \ } 411 </math>
 
<math> \mathrm{(A) \ } 129\qquad \mathrm{(B) \ } 137\qquad \mathrm{(C) \ } 174\qquad \mathrm{(D) \ } 233\qquad \mathrm{(E) \ } 411 </math>
Line 90: Line 107:
  
 
== Problem 13 ==
 
== Problem 13 ==
Joe and JoAnn each bought 12 ounces of coffee in a 16 ounce cup. Joe drank 2 ounces of his coffee and then added 2 ounces of cream. JoAnn added 2 ounces of cream, stirred the coffee well, and then drank 2 ounces. What is the resulting ratio of the ammount of cream in Joe's coffee to that in JoAnn's coffee?  
+
Joe and JoAnn each bought 12 ounces of coffee in a 16 ounce cup. Joe drank 2 ounces of his coffee and then added 2 ounces of cream. JoAnn added 2 ounces of cream, stirred the coffee well, and then drank 2 ounces. What is the resulting ratio of the amount of cream in Joe's coffee to that in JoAnn's coffee?  
  
 
<math> \mathrm{(A) \ } \frac{6}{7}\qquad \mathrm{(B) \ } \frac{13}{14}\qquad \mathrm{(C) \ }1 \qquad \mathrm{(D) \ } \frac{14}{13}\qquad \mathrm{(E) \ } \frac{7}{6} </math>
 
<math> \mathrm{(A) \ } \frac{6}{7}\qquad \mathrm{(B) \ } \frac{13}{14}\qquad \mathrm{(C) \ }1 \qquad \mathrm{(D) \ } \frac{14}{13}\qquad \mathrm{(E) \ } \frac{7}{6} </math>
Line 97: Line 114:
  
 
== Problem 14 ==
 
== Problem 14 ==
Let <math>a</math> and <math>b</math> be the roots of the equation <math> x^2-mx+2=0 </math>. Suppose that <math> a+(1/b) </math> and <math> b+(1/a) </math> are the roots of the equation <math> x^2-px+q=0 </math>. What is <math>q</math>?
+
Let <math>a</math> and <math>b</math> be the roots of the equation <math> x^2-mx+2=0 </math>. Suppose that <math> a+\frac{1}{b} </math> and <math>b+\frac{1}{a}</math> are the roots of the equation <math> x^2-px+q=0 </math>. What is <math>q</math>?
  
 
<math> \mathrm{(A) \ } \frac{5}{2}\qquad \mathrm{(B) \ } \frac{7}{2}\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } \frac{9}{2}\qquad \mathrm{(E) \ } 8 </math>
 
<math> \mathrm{(A) \ } \frac{5}{2}\qquad \mathrm{(B) \ } \frac{7}{2}\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } \frac{9}{2}\qquad \mathrm{(E) \ } 8 </math>
Line 106: Line 123:
 
Rhombus <math>ABCD</math> is similar to rhombus <math>BFDE</math>. The area of rhombus <math>ABCD</math> is <math>24</math> and <math> \angle BAD = 60^\circ </math>. What is the area of rhombus <math>BFDE</math>?  
 
Rhombus <math>ABCD</math> is similar to rhombus <math>BFDE</math>. The area of rhombus <math>ABCD</math> is <math>24</math> and <math> \angle BAD = 60^\circ </math>. What is the area of rhombus <math>BFDE</math>?  
  
[[Image:2006amc10b15.gif]]
+
<asy>
 +
unitsize(3cm);
 +
defaultpen(.8);
 +
 
 +
pair A=(0,0), B=(1,0), D=dir(60), C=B+D;
 +
 
 +
draw(A--B--C--D--cycle);
 +
pair Ep = intersectionpoint( B -- (B+10*dir(150)), D -- (D+10*dir(270)) );
 +
pair F = intersectionpoint( B -- (B+10*dir(90)), D -- (D+10*dir(330)) );
 +
 
 +
draw(B--Ep--D--F--cycle);
 +
 
 +
label("$A$",A,SW);
 +
label("$B$",B,SE);
 +
label("$C$",C,NE);
 +
label("$D$",D,NW);
 +
label("$E$",Ep,SW);
 +
label("$F$",F,NE);
 +
</asy>
  
 
<math> \mathrm{(A) \ } 6\qquad \mathrm{(B) \ } 4\sqrt{3}\qquad \mathrm{(C) \ } 8\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 6\sqrt{3} </math>
 
<math> \mathrm{(A) \ } 6\qquad \mathrm{(B) \ } 4\sqrt{3}\qquad \mathrm{(C) \ } 8\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 6\sqrt{3} </math>
Line 113: Line 148:
  
 
== Problem 16 ==
 
== Problem 16 ==
Leap Day, February 29, 2004, occured on a Sunday. On what day of the week will Leap Day, February 29, 2020, occur?  
+
Leap Day, February 29, 2004, occurred on a Sunday. On what day of the week will Leap Day, February 29, 2020, occur?  
  
<math> \mathrm{(A) \ } Tuesday \qquad \mathrm{(B) \ } Wednesday \qquad \mathrm{(C) \ } Thursday \qquad \mathrm{(D) \ } Friday \qquad \mathrm{(E) \ } Saturday </math>
+
<math> \mathrm{(A) \ } \textrm{Tuesday} \qquad \mathrm{(B) \ } \textrm{Wednesday} \qquad \mathrm{(C) \ } \textrm{Thursday} \qquad \mathrm{(D) \ } \textrm{Friday} \qquad \mathrm{(E) \ } \textrm{Saturday} </math>
  
 
[[2006 AMC 10B Problems/Problem 16|Solution]]
 
[[2006 AMC 10B Problems/Problem 16|Solution]]
Line 140: Line 175:
 
A circle of radius <math>2</math> is centered at <math>O</math>. Square <math>OABC</math> has side length <math>1</math>. Sides <math>AB</math> and <math>CB</math> are extended past <math>B</math> to meet the circle at <math>D</math> and <math>E</math>, respectively. What is the area of the shaded region in the figure, which is bounded by <math>BD</math>, <math>BE</math>, and the minor arc connecting <math>D</math> and <math>E</math>?
 
A circle of radius <math>2</math> is centered at <math>O</math>. Square <math>OABC</math> has side length <math>1</math>. Sides <math>AB</math> and <math>CB</math> are extended past <math>B</math> to meet the circle at <math>D</math> and <math>E</math>, respectively. What is the area of the shaded region in the figure, which is bounded by <math>BD</math>, <math>BE</math>, and the minor arc connecting <math>D</math> and <math>E</math>?
  
[[Image:2006amc10b19.gif]]
+
<asy>
 +
unitsize(1.5cm);
 +
defaultpen(.8);
 +
 
 +
draw( circle( (0,0), 2 ) );
 +
draw( (-2,0) -- (2,0) );
 +
draw( (0,-2) -- (0,2) );
 +
 
 +
pair D = intersectionpoint( circle( (0,0), 2 ), (1,0) -- (1,2) );
 +
pair Ep = intersectionpoint( circle( (0,0), 2 ), (0,1) -- (2,1) );
 +
draw( (1,0) -- D );
 +
draw( (0,1) -- Ep );
 +
 
 +
filldraw( (1,1) -- arc( (0,0),Ep,D ) -- cycle, mediumgray, black );
 +
 
 +
label("$O$",(0,0),SW);
 +
label("$A$",(1,0),S);
 +
label("$C$",(0,1),W);
 +
label("$B$",(1,1),SW);
 +
label("$D$",D,N);
 +
label("$E$",Ep,E);
 +
</asy>
  
 
<math> \mathrm{(A) \ } \frac{\pi}{3}+1-\sqrt{3}\qquad \mathrm{(B) \ } \frac{\pi}{2}(2-\sqrt{3})\qquad \mathrm{(C) \ } \pi(2-\sqrt{3})\qquad \mathrm{(D) \ } \frac{\pi}{6}+\frac{\sqrt{3}+1}{2}\qquad \mathrm{(E) \ } \frac{\pi}{3}-1+\sqrt{3} </math>
 
<math> \mathrm{(A) \ } \frac{\pi}{3}+1-\sqrt{3}\qquad \mathrm{(B) \ } \frac{\pi}{2}(2-\sqrt{3})\qquad \mathrm{(C) \ } \pi(2-\sqrt{3})\qquad \mathrm{(D) \ } \frac{\pi}{6}+\frac{\sqrt{3}+1}{2}\qquad \mathrm{(E) \ } \frac{\pi}{3}-1+\sqrt{3} </math>
Line 161: Line 217:
  
 
== Problem 22 ==
 
== Problem 22 ==
Elmo makes <math>N</math> sandwiches for a fundraiser. For each sandwich he uses <math>B</math> globs of peanut butter at <math>4</math>¢ per glob and <math>J</math> blobs of jam at <math>5</math>¢ per blob. The cost of the peanut butter and jam to make all the sandwiches is <math>$2.53</math>. Assume that <math>B</math>, <math>J</math>, and <math>N</math> are positive integers with <math>N>1</math>. What is the cost of the jam Elmo uses to make the sandwiches?
+
Elmo makes <math>N</math> sandwiches for a fundraiser. For each sandwich he uses <math>B</math> globs of peanut butter at <math>4\cent</math> per glob and <math>J</math> blobs of jam at <math>5\cent</math> per blob. The cost of the peanut butter and jam to make all the sandwiches is <math>$2.53</math>. Assume that <math>B</math>, <math>J</math>, and <math>N</math> are positive integers with <math>N>1</math>. What is the cost of the jam Elmo uses to make the sandwiches?
  
<math> \mathrm{(A) \ } $1.05\qquad \mathrm{(B) \ } $1.25\qquad \mathrm{(C) \ } $1.45\qquad \mathrm{(D) \ } $1.65\qquad \mathrm{(E) \ } $1.85 </math>
+
<math> \mathrm{(A) \ } 1.05\qquad \mathrm{(B) \ } 1.25\qquad \mathrm{(C) \ } 1.45\qquad \mathrm{(D) \ } 1.65\qquad \mathrm{(E) \ } 1.85 </math>
  
 
[[2006 AMC 10B Problems/Problem 22|Solution]]
 
[[2006 AMC 10B Problems/Problem 22|Solution]]
Line 170: Line 226:
 
A triangle is partitioned into three triangles and a quadrilateral by drawing two lines from vertices to their opposite sides. The areas of the three triangles are 3, 7, and 7 as shown. What is the area of the shaded quadrilateral?
 
A triangle is partitioned into three triangles and a quadrilateral by drawing two lines from vertices to their opposite sides. The areas of the three triangles are 3, 7, and 7 as shown. What is the area of the shaded quadrilateral?
  
[[Image:2006amc10b23.gif]]
+
<asy>
 +
unitsize(1.5cm);
 +
defaultpen(.8);
 +
 
 +
pair A = (0,0), B = (3,0), C = (1.4, 2), D = B + 0.4*(C-B), Ep = A + 0.3*(C-A);
 +
pair F = intersectionpoint( A--D, B--Ep );
 +
 
 +
draw( A -- B -- C -- cycle );
 +
draw( A -- D );
 +
draw( B -- Ep );
 +
filldraw( D -- F -- Ep -- C -- cycle, mediumgray, black );
 +
 
 +
label("$7$",(1.25,0.2));
 +
label("$7$",(2.2,0.45));
 +
label("$3$",(0.45,0.35));
 +
</asy>
  
 
<math> \mathrm{(A) \ } 15\qquad \mathrm{(B) \ } 17\qquad \mathrm{(C) \ } \frac{35}{2}\qquad \mathrm{(D) \ } 18\qquad \mathrm{(E) \ } \frac{55}{3} </math>
 
<math> \mathrm{(A) \ } 15\qquad \mathrm{(B) \ } 17\qquad \mathrm{(C) \ } \frac{35}{2}\qquad \mathrm{(D) \ } 18\qquad \mathrm{(E) \ } \frac{55}{3} </math>
Line 179: Line 250:
 
Circles with centers <math>O</math> and <math>P</math> have radii <math>2</math> and <math>4</math>, respectively, and are externally tangent. Points <math>A</math> and <math>B</math> on the circle with center <math>O</math> and points <math>C</math> and <math>D</math> on the circle with center <math>P</math> are such that <math>AD</math> and <math>BC</math> are common external tangents to the circles. What is the area of the concave hexagon <math>AOBCPD</math>?
 
Circles with centers <math>O</math> and <math>P</math> have radii <math>2</math> and <math>4</math>, respectively, and are externally tangent. Points <math>A</math> and <math>B</math> on the circle with center <math>O</math> and points <math>C</math> and <math>D</math> on the circle with center <math>P</math> are such that <math>AD</math> and <math>BC</math> are common external tangents to the circles. What is the area of the concave hexagon <math>AOBCPD</math>?
  
[[Image:2006amc10b24.gif]]
+
<asy>
 +
unitsize(.7cm);
 +
defaultpen(.8);
 +
 
 +
pair O = (0,0), P = (6,0), Q = (-6,0);
 +
pair A = intersectionpoint( arc( (-3,0), (0,0), (-6,0) ), circle( O, 2 ) );
 +
pair B = (A.x, -A.y );
 +
pair D = Q + 2*(A-Q);
 +
pair C = Q + 2*(B-Q);
 +
 
 +
draw( circle(O,2) );
 +
draw( circle(P,4) );
 +
draw( (Q + 0.8*(A-Q)) -- ( Q + 2.3*(A-Q) ) );
 +
draw( (Q + 0.8*(B-Q)) -- ( Q + 2.3*(B-Q) ) );
 +
draw( A -- O -- B );
 +
draw( C -- P -- D );
 +
draw( O -- P );
 +
 
 +
label("$O$",O,W);
 +
label("$P$",P,E);
 +
 
 +
label("$A$",A,NNW);
 +
label("$B$",B,SSW);
 +
 
 +
label("$D$",D,NNW);
 +
label("$C$",C,SSW);
 +
</asy>
  
 
<math> \mathrm{(A) \ } 18\sqrt{3}\qquad \mathrm{(B) \ } 24\sqrt{2}\qquad \mathrm{(C) \ } 36\qquad \mathrm{(D) \ } 24\sqrt{3}\qquad \mathrm{(E) \ } 32\sqrt{2} </math>
 
<math> \mathrm{(A) \ } 18\sqrt{3}\qquad \mathrm{(B) \ } 24\sqrt{2}\qquad \mathrm{(C) \ } 36\qquad \mathrm{(D) \ } 24\sqrt{3}\qquad \mathrm{(E) \ } 32\sqrt{2} </math>
Line 186: Line 283:
  
 
== Problem 25 ==
 
== Problem 25 ==
Mr. Jones has eight children of different ages. On a family trip his oldest child, who is 9, spots a license plate with a 4-digit number in which each of two digits appears two times. "Look, daddy!" she exclaims. "That number is evenly divisible by the age of each of us kids!" "That's right," replies Mr. Jones, "and the last two digits just happen to be my age." Which of the following is <b><i>not</i></b> the age of one of Mr. Jones's children?  
+
Mr. Jones has eight children of different ages. On a family trip his oldest child, who is 9, spots a license plate with a 4-digit number in which each of two digits appears two times. "Look, daddy!!!!" she exclaims. "That number is evenly divisible by the age of each of us kids!" "That's right," replies Mr. Jones, "and the last two digits just happen to be my age." Which of the following is <b><i>not</i></b> the age of one of Mr. Jones's children?  
  
 
<math> \mathrm{(A) \ } 4\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 6\qquad \mathrm{(D) \ } 7\qquad \mathrm{(E) \ } 8 </math>
 
<math> \mathrm{(A) \ } 4\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 6\qquad \mathrm{(D) \ } 7\qquad \mathrm{(E) \ } 8 </math>
Line 193: Line 290:
  
 
== See also ==
 
== See also ==
 
+
{{AMC10 box|year=2006|ab=B|before=[[2006 AMC 10A Problems]]|after=[[2007 AMC 10A Problems]]}}
 
* [[AMC 10]]
 
* [[AMC 10]]
 
* [[AMC 10 Problems and Solutions]]
 
* [[AMC 10 Problems and Solutions]]
 
* [[2006 AMC 10B]]
 
* [[2006 AMC 10B]]
* [http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=143 2006 AMC B Math Jam Transcript]
+
* [https://artofproblemsolving.com/school/mathjams-transcripts?id=143 2006 AMC B Math Jam Transcript]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
{{MAA Notice}}

Latest revision as of 00:17, 30 January 2024

2006 AMC 10B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is $(-1)^{1} + (-1)^{2} + ... + (-1)^{2006}$ ?

$\mathrm{(A) \ } -2006\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } 1\qquad \mathrm{(E) \ } 2006$

Solution

Problem 2

For real numbers $x$ and $y$, define $x \mathop{\spadesuit} y = (x+y)(x-y)$. What is $3 \mathop{\spadesuit} (4 \mathop{\spadesuit} 5)$?

$\mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72$

Solution

Problem 3

A football game was played between two teams, the Cougars and the Panthers. The two teams scored a total of 34 points, and the Cougars won by a margin of 14 points. How many points did the Panthers score?

$\mathrm{(A) \ } 10\qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 17\qquad \mathrm{(D) \ } 20\qquad \mathrm{(E) \ } 24$

Solution

Problem 4

Circles of diameter 1 inch and 3 inches have the same center. The smaller circle is painted red, and the portion outside the smaller circle and inside the larger circle is painted blue. What is the ratio of the blue-painted area to the red-painted area?

2006amc10b04.gif

$\mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 6\qquad \mathrm{(D) \ } 8\qquad \mathrm{(E) \ } 9$

Solution

Problem 5

A $2 \times 3$ rectangle and a $3 \times 4$ rectangle are contained within a square without overlapping at any point, and the sides of the square are parallel to the sides of the two given rectangles. What is the smallest possible area of the square?

$\mathrm{(A) \ } 16\qquad \mathrm{(B) \ } 25\qquad \mathrm{(C) \ } 36\qquad \mathrm{(D) \ } 49\qquad \mathrm{(E) \ } 64$

Solution

Problem 6

A region is bounded by semicircular arcs constructed on the side of a square whose sides measure $\frac{2}{\pi}$, as shown. What is the perimeter of this region?

[asy] unitsize(1cm); defaultpen(.8);  filldraw( circle( (0,1), 1 ), lightgray, black ); filldraw( circle( (0,-1), 1 ), lightgray, black ); filldraw( circle( (1,0), 1 ), lightgray, black ); filldraw( circle( (-1,0), 1 ), lightgray, black ); filldraw( (-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle, lightgray, black ); [/asy]

$\mathrm{(A) \ } \frac{4}{\pi}\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } \frac{8}{\pi}\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } \frac{16}{\pi}$

Solution

Problem 7

Which of the following is equivalent to $\sqrt{\frac{x}{1-\frac{x-1}{x}}}$ when $x < 0$?

$\mathrm{(A) \ } -x\qquad \mathrm{(B) \ } x\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } \sqrt{\frac{x}{2}}\qquad \mathrm{(E) \ } x\sqrt{-1}$

Solution

Problem 8

A square of area 40 is inscribed in a semicircle as shown. What is the area of the semicircle?

[asy] unitsize(1cm); defaultpen(.8);  draw( (-sqrt(5),0) -- (sqrt(5),0), dashed ); draw( (-1,0)--(-1,2)--(1,2)--(1,0)--cycle ); draw( arc( (0,0), sqrt(5), 0, 180 ) ); [/asy]

$\mathrm{(A) \ } 20\pi\qquad \mathrm{(B) \ } 25\pi\qquad \mathrm{(C) \ } 30\pi\qquad \mathrm{(D) \ } 40\pi\qquad \mathrm{(E) \ } 50\pi$

Solution

Problem 9

Francesca uses 100 grams of lemon juice, 100 grams of sugar, and 400 grams of water to make lemonade. There are 25 calories in 100 grams of lemon juice and 386 calories in 100 grams of sugar. Water contains no calories. How many calories are in 200 grams of her lemonade?

$\mathrm{(A) \ } 129\qquad \mathrm{(B) \ } 137\qquad \mathrm{(C) \ } 174\qquad \mathrm{(D) \ } 233\qquad \mathrm{(E) \ } 411$

Solution

Problem 10

In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is 15. What is the greatest possible perimeter of the triangle?

$\mathrm{(A) \ } 43\qquad \mathrm{(B) \ } 44\qquad \mathrm{(C) \ } 45\qquad \mathrm{(D) \ } 46\qquad \mathrm{(E) \ } 47$

Solution

Problem 11

What is the tens digit in the sum $7!+8!+9!+...+2006!$

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 9$

Solution

Problem 12

The lines $x=\frac{1}{4}y+a$ and $y=\frac{1}{4}x+b$ intersect at the point $(1,2)$. What is $a+b$?

$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } \frac{3}{4}\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } 2\qquad \mathrm{(E) \ } \frac{9}{4}$

Solution

Problem 13

Joe and JoAnn each bought 12 ounces of coffee in a 16 ounce cup. Joe drank 2 ounces of his coffee and then added 2 ounces of cream. JoAnn added 2 ounces of cream, stirred the coffee well, and then drank 2 ounces. What is the resulting ratio of the amount of cream in Joe's coffee to that in JoAnn's coffee?

$\mathrm{(A) \ } \frac{6}{7}\qquad \mathrm{(B) \ } \frac{13}{14}\qquad \mathrm{(C) \ }1 \qquad \mathrm{(D) \ } \frac{14}{13}\qquad \mathrm{(E) \ } \frac{7}{6}$

Solution

Problem 14

Let $a$ and $b$ be the roots of the equation $x^2-mx+2=0$. Suppose that $a+\frac{1}{b}$ and $b+\frac{1}{a}$ are the roots of the equation $x^2-px+q=0$. What is $q$?

$\mathrm{(A) \ } \frac{5}{2}\qquad \mathrm{(B) \ } \frac{7}{2}\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } \frac{9}{2}\qquad \mathrm{(E) \ } 8$

Solution

Problem 15

Rhombus $ABCD$ is similar to rhombus $BFDE$. The area of rhombus $ABCD$ is $24$ and $\angle BAD = 60^\circ$. What is the area of rhombus $BFDE$?

[asy] unitsize(3cm); defaultpen(.8);  pair A=(0,0), B=(1,0), D=dir(60), C=B+D;  draw(A--B--C--D--cycle); pair Ep = intersectionpoint( B -- (B+10*dir(150)), D -- (D+10*dir(270)) ); pair F = intersectionpoint( B -- (B+10*dir(90)), D -- (D+10*dir(330)) );  draw(B--Ep--D--F--cycle);  label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",Ep,SW); label("$F$",F,NE); [/asy]

$\mathrm{(A) \ } 6\qquad \mathrm{(B) \ } 4\sqrt{3}\qquad \mathrm{(C) \ } 8\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 6\sqrt{3}$

Solution

Problem 16

Leap Day, February 29, 2004, occurred on a Sunday. On what day of the week will Leap Day, February 29, 2020, occur?

$\mathrm{(A) \ } \textrm{Tuesday} \qquad \mathrm{(B) \ } \textrm{Wednesday} \qquad \mathrm{(C) \ } \textrm{Thursday} \qquad \mathrm{(D) \ } \textrm{Friday} \qquad \mathrm{(E) \ } \textrm{Saturday}$

Solution

Problem 17

Bob and Alice each have a bag that contains one ball of each of the colors blue, green, orange, red, and violet. Alice randomly selects one ball from her bag and puts it into Bob's bag. Bob then randomly selects one ball from his bag and puts it into Alice's bag. What is the probability that after this process the contents of the two bags are the same?

$\mathrm{(A) \ } \frac{1}{10}\qquad \mathrm{(B) \ } \frac{1}{6}\qquad \mathrm{(C) \ } \frac{1}{5}\qquad \mathrm{(D) \ } \frac{1}{3}\qquad \mathrm{(E) \ } \frac{1}{2}$

Solution

Problem 18

Let $a_1 , a_2 , ...$ be a sequence for which

$a_1=2$ , $a_2=3$, and $a_n=\frac{a_{n-1}}{a_{n-2}}$ for each positive integer $n \ge 3$.

What is $a_{2006}$?

$\mathrm{(A) \ } \frac{1}{2}\qquad \mathrm{(B) \ } \frac{2}{3}\qquad \mathrm{(C) \ } \frac{3}{2}\qquad \mathrm{(D) \ } 2\qquad \mathrm{(E) \ } 3$

Solution

Problem 19

A circle of radius $2$ is centered at $O$. Square $OABC$ has side length $1$. Sides $AB$ and $CB$ are extended past $B$ to meet the circle at $D$ and $E$, respectively. What is the area of the shaded region in the figure, which is bounded by $BD$, $BE$, and the minor arc connecting $D$ and $E$?

[asy] unitsize(1.5cm); defaultpen(.8);  draw( circle( (0,0), 2 ) ); draw( (-2,0) -- (2,0) ); draw( (0,-2) -- (0,2) );  pair D = intersectionpoint( circle( (0,0), 2 ), (1,0) -- (1,2) ); pair Ep = intersectionpoint( circle( (0,0), 2 ), (0,1) -- (2,1) ); draw( (1,0) -- D ); draw( (0,1) -- Ep );  filldraw( (1,1) -- arc( (0,0),Ep,D ) -- cycle, mediumgray, black );  label("$O$",(0,0),SW); label("$A$",(1,0),S); label("$C$",(0,1),W); label("$B$",(1,1),SW); label("$D$",D,N); label("$E$",Ep,E); [/asy]

$\mathrm{(A) \ } \frac{\pi}{3}+1-\sqrt{3}\qquad \mathrm{(B) \ } \frac{\pi}{2}(2-\sqrt{3})\qquad \mathrm{(C) \ } \pi(2-\sqrt{3})\qquad \mathrm{(D) \ } \frac{\pi}{6}+\frac{\sqrt{3}+1}{2}\qquad \mathrm{(E) \ } \frac{\pi}{3}-1+\sqrt{3}$

Solution

Problem 20

In rectangle $ABCD$, we have $A=(6,-22)$, $B=(2006,178)$, $D=(8,y)$, for some integer $y$. What is the area of rectangle $ABCD$?

$\mathrm{(A) \ } 4000\qquad \mathrm{(B) \ } 4040\qquad \mathrm{(C) \ } 4400\qquad \mathrm{(D) \ } 40,000\qquad \mathrm{(E) \ } 40,400$

Solution

Problem 21

For a particular peculiar pair of dice, the probabilities of rolling $1$, $2$, $3$, $4$, $5$, and $6$, on each die are in the ratio $1:2:3:4:5:6$. What is the probability of rolling a total of $7$ on the two dice?

$\mathrm{(A) \ } \frac{4}{63}\qquad \mathrm{(B) \ } \frac{1}{8}\qquad \mathrm{(C) \ } \frac{8}{63}\qquad \mathrm{(D) \ } \frac{1}{6}\qquad \mathrm{(E) \ } \frac{2}{7}$

Solution

Problem 22

Elmo makes $N$ sandwiches for a fundraiser. For each sandwich he uses $B$ globs of peanut butter at $4\cent$ per glob and $J$ blobs of jam at $5\cent$ per blob. The cost of the peanut butter and jam to make all the sandwiches is $$2.53$. Assume that $B$, $J$, and $N$ are positive integers with $N>1$. What is the cost of the jam Elmo uses to make the sandwiches?

$\mathrm{(A) \ } 1.05\qquad \mathrm{(B) \ } 1.25\qquad \mathrm{(C) \ } 1.45\qquad \mathrm{(D) \ } 1.65\qquad \mathrm{(E) \ } 1.85$

Solution

Problem 23

A triangle is partitioned into three triangles and a quadrilateral by drawing two lines from vertices to their opposite sides. The areas of the three triangles are 3, 7, and 7 as shown. What is the area of the shaded quadrilateral?

[asy] unitsize(1.5cm); defaultpen(.8);  pair A = (0,0), B = (3,0), C = (1.4, 2), D = B + 0.4*(C-B), Ep = A + 0.3*(C-A); pair F = intersectionpoint( A--D, B--Ep );  draw( A -- B -- C -- cycle ); draw( A -- D ); draw( B -- Ep ); filldraw( D -- F -- Ep -- C -- cycle, mediumgray, black );  label("$7$",(1.25,0.2)); label("$7$",(2.2,0.45)); label("$3$",(0.45,0.35)); [/asy]

$\mathrm{(A) \ } 15\qquad \mathrm{(B) \ } 17\qquad \mathrm{(C) \ } \frac{35}{2}\qquad \mathrm{(D) \ } 18\qquad \mathrm{(E) \ } \frac{55}{3}$

Solution

Problem 24

Circles with centers $O$ and $P$ have radii $2$ and $4$, respectively, and are externally tangent. Points $A$ and $B$ on the circle with center $O$ and points $C$ and $D$ on the circle with center $P$ are such that $AD$ and $BC$ are common external tangents to the circles. What is the area of the concave hexagon $AOBCPD$?

[asy] unitsize(.7cm); defaultpen(.8);  pair O = (0,0), P = (6,0), Q = (-6,0); pair A = intersectionpoint( arc( (-3,0), (0,0), (-6,0) ), circle( O, 2 ) ); pair B = (A.x, -A.y ); pair D = Q + 2*(A-Q); pair C = Q + 2*(B-Q);  draw( circle(O,2) ); draw( circle(P,4) ); draw( (Q + 0.8*(A-Q)) -- ( Q + 2.3*(A-Q) ) ); draw( (Q + 0.8*(B-Q)) -- ( Q + 2.3*(B-Q) ) ); draw( A -- O -- B ); draw( C -- P -- D ); draw( O -- P );  label("$O$",O,W); label("$P$",P,E);  label("$A$",A,NNW); label("$B$",B,SSW);  label("$D$",D,NNW); label("$C$",C,SSW); [/asy]

$\mathrm{(A) \ } 18\sqrt{3}\qquad \mathrm{(B) \ } 24\sqrt{2}\qquad \mathrm{(C) \ } 36\qquad \mathrm{(D) \ } 24\sqrt{3}\qquad \mathrm{(E) \ } 32\sqrt{2}$

Solution

Problem 25

Mr. Jones has eight children of different ages. On a family trip his oldest child, who is 9, spots a license plate with a 4-digit number in which each of two digits appears two times. "Look, daddy!!!!" she exclaims. "That number is evenly divisible by the age of each of us kids!" "That's right," replies Mr. Jones, "and the last two digits just happen to be my age." Which of the following is not the age of one of Mr. Jones's children?

$\mathrm{(A) \ } 4\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 6\qquad \mathrm{(D) \ } 7\qquad \mathrm{(E) \ } 8$

Solution

See also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
2006 AMC 10A Problems
Followed by
2007 AMC 10A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png