Difference between revisions of "2023 AMC 12B Problems/Problem 25"
(→Solution 2 (In Progress)) |
(→Solution 5 (answer choices (not rigorous))) |
||
(90 intermediate revisions by 9 users not shown) | |||
Line 10: | Line 10: | ||
==Solution 1== | ==Solution 1== | ||
− | [[File:Pentagon_2023_12B_Q25_dissmo.png]] | + | [[File:Pentagon_2023_12B_Q25_dissmo.png|600px]] |
Let the original pentagon be <math>ABCDE</math> centered at <math>O</math>. The dashed lines represent the fold lines. WLOG, let's focus on vertex <math>A</math>. | Let the original pentagon be <math>ABCDE</math> centered at <math>O</math>. The dashed lines represent the fold lines. WLOG, let's focus on vertex <math>A</math>. | ||
− | Since <math>A</math> is folded onto <math>O</math>, <math> | + | Since <math>A</math> is folded onto <math>O</math>, <math>AM = MO</math> where <math>M</math> is the intersection of <math>AO</math> and the creaseline between <math>A</math> and <math>O</math>. Note that the inner pentagon is regular, and therefore similar to the original pentagon, due to symmetry. |
Because of their similarity, the ratio of the inner pentagon's area to that of the outer pentagon can be represented by | Because of their similarity, the ratio of the inner pentagon's area to that of the outer pentagon can be represented by | ||
− | <math>(\frac{ | + | <math>\left(\frac{OM}{ON}\right)^{2} = \left(\frac{\frac{OA}{2}}{OA\sin (\angle OAE)}\right)^{2} = \frac{1}{4\sin^{2}54}</math> |
Line 55: | Line 55: | ||
-Dissmo | -Dissmo | ||
− | + | ==Solution 2== | |
− | ==Solution 2 | ||
Line 83: | Line 82: | ||
OO = O+(0,0); | OO = O+(0,0); | ||
− | + | label("$O$", O, S); | |
+ | |||
pair OOO, OAO; | pair OOO, OAO; | ||
Line 89: | Line 89: | ||
OAO = (O+A)/2 + (gap,0); | OAO = (O+A)/2 + (gap,0); | ||
− | |||
dot(O); | dot(O); | ||
− | |||
− | |||
− | |||
− | |||
label("$A$", (0,1), E); | label("$A$", (0,1), E); | ||
label("$B$", B, S); | label("$B$", B, S); | ||
Line 111: | Line 106: | ||
J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180); | J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180); | ||
− | label("$F$", ( | + | |
+ | |||
+ | pair K, L, M, N, O, P, Q, R, S, T, U, V; | ||
+ | |||
+ | real newScaleFactor = 0.8507; | ||
+ | K = newScaleFactor*dir(270+18); | ||
+ | L = newScaleFactor*dir(270+72+18); | ||
+ | M = newScaleFactor*dir(270+72+72+18); | ||
+ | N = newScaleFactor*dir(270+72+72+72+18); | ||
+ | O = newScaleFactor*dir(270+72+72+72+72+18); | ||
+ | P = newScaleFactor*dir(270-18); | ||
+ | Q = newScaleFactor*dir(270+72-18); | ||
+ | R = newScaleFactor*dir(270+72+72-18); | ||
+ | S = newScaleFactor*dir(270+72+72+72-18); | ||
+ | T = newScaleFactor*dir(270+72+72+72+72-18); | ||
+ | label("$K$", K, S); | ||
+ | label("$L$", L, S); | ||
+ | label("$M$", M, S); | ||
+ | label("$N$", N, S); | ||
+ | label("$O$", O, W); | ||
+ | label("$P$", P, S); | ||
+ | label("$Q$", Q, E); | ||
+ | label("$R$", R, S); | ||
+ | label("$S$", S, S); | ||
+ | label("$T$", T, W); | ||
+ | draw(K--T, dashed); | ||
+ | draw(S--O, dashed); | ||
+ | draw(P--L, dashed); | ||
+ | draw(Q--M, dashed); | ||
+ | draw(R--N, dashed); | ||
+ | |||
+ | label("$F$", F, S); | ||
+ | label("$G$", G, S); | ||
+ | label("$H$", H, S); | ||
+ | label("$I$", I, S); | ||
+ | label("$J$", J, S); | ||
+ | |||
// Draw the smaller pentagon | // Draw the smaller pentagon | ||
draw(F--G--H--I--J--cycle,red); | draw(F--G--H--I--J--cycle,red); | ||
+ | |||
+ | </asy> | ||
+ | |||
+ | We can find the area of the red pentagon by taking the area of the total pentagon and subtracting the area outside the red pentagon. | ||
+ | |||
+ | The area outside the red pentagon is the sum of the larger isosceles triangles, but this double counts the overlapping regions of the small isosceles triangles, so we have to subtract those out. | ||
+ | |||
+ | We have <math>[FGHIJ] = [ABCDE]-(5 \cdot[DKT]-5 \cdot [PFK])</math> | ||
+ | |||
+ | Lets focus on finding the area of each individual triangle: | ||
+ | |||
+ | <asy> | ||
+ | unitsize(5cm); | ||
+ | |||
+ | // Define the vertices of the pentagons | ||
+ | pair A, B, C, D, E; | ||
+ | pair F, G, H, I, J; | ||
+ | |||
+ | // Calculate the vertices of the larger pentagon | ||
+ | A = dir(90); | ||
+ | B = dir(90 - 72); | ||
+ | C = dir(90 - 2*72); | ||
+ | D = dir(90 - 3*72); | ||
+ | E = dir(90 - 4*72); | ||
+ | |||
+ | |||
+ | pair O = (A+B+C+D+E)/5; | ||
+ | pair AA,OO; | ||
+ | real gap = 0.02; | ||
+ | AA = A+(0,0); | ||
+ | OO = O+(0,0); | ||
+ | |||
+ | label("$O$", O, S); | ||
+ | |||
+ | pair OOO, OAO; | ||
+ | OOO = O+(gap,0); | ||
+ | OAO = (O+A)/2 + (gap,0); | ||
+ | |||
+ | dot(O); | ||
+ | |||
+ | label("$D$", D, S); | ||
+ | |||
+ | |||
+ | real scaleFactor = 1/1.618; // Adjust this value as needed | ||
+ | // Rotate the smaller pentagon by 180 degrees | ||
+ | F = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 + 180); | ||
+ | G = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 72 + 180); | ||
+ | H = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 2*72 + 180); | ||
+ | I = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 3*72 + 180); | ||
+ | J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180); | ||
+ | |||
+ | label("$F$", F, N); | ||
pair K, L, M, N, O, P, Q, R, S, T, U, V; | pair K, L, M, N, O, P, Q, R, S, T, U, V; | ||
− | K = (0. | + | real newScaleFactor = 0.8507; |
+ | K = newScaleFactor*dir(270+18); | ||
+ | T = newScaleFactor*dir(270+72+72+72+72-18); | ||
+ | label("$K$", K, E); | ||
+ | label("$T$", T, W); | ||
+ | draw(K--T); | ||
+ | draw(K--D); | ||
+ | draw(D--T); | ||
+ | |||
+ | |||
+ | </asy> | ||
+ | |||
+ | Notice that we have no information about the side length, so instead we let the side length be <math>s</math>. Now we can drop an altitude from <math>O</math> to the base of the triangle, and we know this altitude must split the base of the pentagon in half, so we can create a right triangle. Furthermore, draw a line from <math>O</math> to <math>D</math>. This must bisect angle <math>D</math> which is <math>108</math> degrees, so we create <math>36-54-90</math> triangles. Specifically, we know <math>\angle ODK = 54^{\circ}</math>, <math>\angle DOU = 36^{\circ}</math>, and <math>\angle DTK = 36^{\circ}</math> because <math>\triangle DTK</math> is isosceles and we know the vertex angle is <math>108^{\circ}</math>. We encode this information in the diagram below: | ||
+ | <asy> | ||
+ | unitsize(5cm); | ||
+ | |||
+ | // Define the vertices of the pentagons | ||
+ | pair A, B, C, D, E; | ||
+ | pair F, G, H, I, J; | ||
+ | |||
+ | // Calculate the vertices of the larger pentagon | ||
+ | A = dir(90); | ||
+ | B = dir(90 - 72); | ||
+ | C = dir(90 - 2*72); | ||
+ | D = dir(90 - 3*72); | ||
+ | E = dir(90 - 4*72); | ||
+ | |||
+ | |||
+ | pair O = (A+B+C+D+E)/5; | ||
+ | pair AA,OO; | ||
+ | real gap = 0.02; | ||
+ | AA = A+(0,0); | ||
+ | OO = O+(0,0); | ||
+ | |||
+ | label("$O$", O, E); | ||
+ | |||
+ | pair OOO, OAO; | ||
+ | OOO = O+(gap,0); | ||
+ | OAO = (O+A)/2 + (gap,0); | ||
+ | |||
+ | dot(O); | ||
+ | |||
+ | label("$D$", D, S); | ||
+ | |||
+ | |||
+ | real scaleFactor = 1/1.618; // Adjust this value as needed | ||
+ | // Rotate the smaller pentagon by 180 degrees | ||
+ | F = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 + 180); | ||
+ | G = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 72 + 180); | ||
+ | H = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 2*72 + 180); | ||
+ | I = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 3*72 + 180); | ||
+ | J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180); | ||
+ | |||
+ | label("$F$", (0.1,-1/1.618), E); | ||
+ | |||
+ | pair K, L, M, N, O, P, Q, R, S, T, U, V; | ||
+ | |||
+ | real newScaleFactor = 0.8507; | ||
+ | K = newScaleFactor*dir(270+18); | ||
+ | T = newScaleFactor*dir(270+72+72+72+72-18); | ||
label("$K$", K, S); | label("$K$", K, S); | ||
+ | label("$T$", T, W); | ||
+ | draw(K--T); | ||
+ | draw(K--D); | ||
+ | draw(D--T); | ||
+ | pair U; | ||
+ | U=(0,-0.809); | ||
+ | label("$U$",(0,-0.9), S); | ||
+ | draw(O--U); | ||
+ | draw(O--D); | ||
+ | |||
+ | pair V; | ||
+ | V = midpoint(O--D); | ||
+ | label("$V$", V+(0,0.05), N); | ||
+ | markscalefactor = 0.005; | ||
+ | draw(rightanglemark(D,U,O)); | ||
+ | draw(rightanglemark(F,V,O)); | ||
+ | draw(rightanglemark(K,U,F)); | ||
+ | |||
+ | draw(anglemark(U,D,O)); | ||
+ | |||
+ | label("$54^{\circ}$", D+(0.05,0),NE); | ||
+ | |||
+ | draw(anglemark(D,O,U)); | ||
+ | |||
+ | label("$36^{\circ}$", O-(0,0.2),SW); | ||
+ | |||
+ | draw(anglemark(D,T,F)); | ||
+ | |||
+ | label("$36^{\circ}$", T+(0.1,-0.17),SE); | ||
+ | |||
+ | label("$\frac{s}{2}$", D+(0.3,-0.1), S); | ||
+ | |||
− | |||
− | |||
− | |||
</asy> | </asy> | ||
+ | Since <math>\triangle DKT</math> is isosceles, the area of <math>\triangle DVT</math> is half the area of <math>\triangle DKT</math>. Similarly, the area of <math>\triangle UFK</math> is half that of <math>\triangle PFK</math>. Thus: | ||
+ | |||
+ | |||
+ | <cmath>[FGHIJ] = [ABCDE]-(5 \cdot[DKT]-5 \cdot [PFK]) \implies [FGHIJ] = [ABCDE]-(10 \cdot [DVT]-10 \cdot [UFK])</cmath> | ||
+ | |||
+ | We also know that since we dropped an altitude from <math>O</math> to <math>U</math>, the area of <math>\triangle ODU</math> must be half of a fifth of the total area of the pentagon. Therefore we can rewrite the above equation as <cmath>[FGHIJ]=10 \cdot ([ODU]-[DVT]+[UFK])</cmath> | ||
+ | |||
+ | Now notice that <math>\triangle ODU ~ \triangle TDV ~ \triangle KFU</math> by AA similarity. Therefore, if we can write the areas of the latter two triangles as a ratio of the first triangle, we can express the whole equation in terms of <math>[ODU]</math>, and by extension <math>[ABCDE]</math>, which we know. To find these ratios, we can find the side length ratios and square them because the triangles are similar. | ||
+ | |||
+ | We already know <math>DU = \frac{s}{2}</math>, so let's try to find it's analogous side for <math>\triangle TDV</math> and <math>\triangle KFU</math>. These sides are <math>DV</math> and <math>FU</math>, respectively. | ||
+ | |||
+ | First, <math>\frac{s}{2} = OD \cdot cos(54^{\circ})</math>, so <math>OD = \frac{s}{2} \cdot sec(54^{\circ})</math>. Then notice that <math>DV = \frac{OD}{2}</math> because we have to fold <math>D</math> to hit <math>O</math>, so the folding crease has to be exactly halfway between <math>O</math> and <math>D</math>. Therefore, <cmath>DV = \frac{s}{4} \cdot sec(54^{\circ}) \implies \frac{DU}{DV} = \frac{\frac{s}{2}}{\frac{s}{4} \cdot sec(54^{\circ})} = 2 \cdot cos(54^{\circ})</cmath> | ||
+ | |||
+ | Now the ratio between the area of two similar triangles is the square of the ratio of their analogous side lengths. Thus | ||
+ | <cmath>\frac{[ODU]}{[TDV]} = 4 \cdot cos^2(54^{\circ}) \implies \frac{10 \cdot [ODU]}{10 \cdot [TDV]} = 4 \cdot cos^2(54^{\circ})</cmath> | ||
+ | <cmath> \implies \frac{[ABCDE]}{10 \cdot [TDV]} = 4 \cdot cos^2(54^{\circ}) \implies \frac{\sqrt{5}+1}{10 \cdot [TDV]} = 4 \cdot cos^2(54^{\circ})</cmath> | ||
+ | <cmath>\implies 10 \cdot [TDV] = \frac{\sqrt{5}+1}{4 \cdot cos^2(54^{\circ})} \implies 10 \cdot [TDV] = \frac{\sqrt{5}+1}{4} \cdot sec^2(54^{\circ})</cmath> | ||
+ | |||
+ | Now let's move on and calculate the ratio of the other side length. Calculating <math>FU</math> is slightly tricker. | ||
+ | First, we find <math>TD</math>: <math>TD \cdot cos(54^{\circ}) = DV = \frac{s}{4} sec^54^{\circ}) \implies TD = \frac{s}{4} \cdot sec^2(54^{\circ})</math>. Now since <math>\triangle DTK</math> is isosceles, <math>TD = DK</math> and <math>UK = DK-DU = TD-DU = \frac{s}{4} \cdot sec^2(54^{\circ})-\frac{s}{2} = \frac{s}{4} \cdot (sec^2(54^{\circ})-2) = \frac{s}{4} \cdot (tan^2(54^{\circ})-1)</math>. | ||
+ | |||
+ | Now <math>FU = UK \cdot tan(36^{\circ}) \implies FU \frac{s}{4} \cdot (tan^2(54^{\circ})-1) \cdot tan(36^{\circ})</math>. Now note that <math>tan(x) \cdot tan(90-x) = 1</math> because opposite over adjacent cancel each other out in a right triangle. Thus, <math>FU = \frac{s}{4} \cdot (tan(54^{\circ})-tan(36^{\circ}))</math> | ||
+ | |||
+ | Now, <cmath>\frac{DU}{FU} = \frac{\frac{s}{2}}{\frac{s}{4} \cdot (tan(54^{\circ})-tan(36^{\circ}))} = \frac{2}{tan(54^{\circ})-tan(36^{\circ})}</cmath> | ||
+ | |||
+ | <cmath>\implies \frac{[DU]}{[FU]} = \frac{4}{(tan(54^{\circ})-tan(36^{\circ}))^2} \implies 10 \cdot [FU] = \frac{1+\sqrt{5}}{4} \cdot (tan(54^{\circ})-tan(36^{\circ}))^2</cmath> | ||
+ | |||
+ | Now we go back to our first equation and plug in our values: | ||
+ | |||
+ | <cmath> [FGHIJ] = [ABCDE]-(10 \cdot [DVT]-10 \cdot [UFK]) \implies [FGHIJ] = 1+\sqrt{5}-\frac{\sqrt{5}+1}{4} \cdot sec^2(54^{\circ})+\frac{1+\sqrt{5}}{4} \cdot (tan(54^{\circ})-tan(36^{\circ}))^2</cmath> | ||
+ | |||
+ | <cmath>\implies [FGHIJ] = \frac{1+\sqrt{5}}{4} \cdot (4-sec^2(54^{\circ})+(tan(54^{\circ})-tan(36^{\circ}))^2)</cmath> | ||
+ | |||
+ | Note <math>(tan(x)-tan(90-x))^2 = tan^2(x)-2 \cdot tan(x) \cdot tan(90-x)+tan^2(90-x) = tan^2(x)-2+tan^2(90-x)</math>. | ||
+ | |||
+ | Also note that <math>tan^2(x)+1 = sec^2(x)</math>. | ||
+ | Thus <cmath>[FGHIJ] = \frac{1+\sqrt{5}}{4} \cdot (2-sec^2(54^{\circ})+tan^2(54^{\circ})+tan^2(36^{\circ}))</cmath> | ||
+ | <cmath>\implies [FGHIJ] = \frac{1+\sqrt{5}}{4} \cdot (2+(-1)+tan^2(36^{\circ})) \implies [FGHIJ] = \frac{1+\sqrt{5}}{4} \cdot (1+tan^2(36^{\circ}))</cmath>. | ||
+ | |||
+ | Now all that remains is to find <math>tan^2(36^{\circ})</math>. We can use the tan addition formula to find the general form of <math>tan(5x)</math> or remember question 25 from this year's AMC 12A. We have that <cmath>tan(5x) = \frac{5tan(x)-10tan^3(x)+tan^5(x)}{1-10tan^2(x)+5tan^4(x)}</cmath>. | ||
+ | |||
+ | Plug in <math>x=36</math>. Then we have <cmath>tan(180^{\circ}) = \frac{5tan(36^{\circ})-10tan^3(36^{\circ})+tan^5(36^{\circ})}{1-10tan^2(36^{\circ})+5tan^4(36^{\circ})}</cmath> | ||
+ | Now let <math>y = tan(36^{\circ})</math>. We have the equation <cmath>\frac{5y-10y^3+y^5}{1-10y^2+5y^4} = 0 \implies 5y-10y^3+y^5 = 0</cmath> | ||
+ | <cmath>\implies 5-10y^2+y^4 = 0 \implies 5-10z+z^2 = 0</cmath> | ||
+ | Where we let <math>z = y^2</math>. Using the quadratic formula, we have <cmath>z = \frac{10 \pm \sqrt{80}}{2} = 5 \pm 2\sqrt{5}</cmath> | ||
+ | Now since <math>y = tan(36^{\circ})</math>, <math>z = tan^2(36^{\circ})</math>, which is what we were looking for. Notice that <math>tan(0^{\circ}) = 0</math> and <math>tan(45^{\circ}) = 1</math>, so <math>tan(36^{\circ})</math> is between <math>0</math> and <math>1</math>, and so is it's square. Thus <math>z = 5 - 2\sqrt{5}</math>, not the other root. | ||
+ | |||
+ | Finally: | ||
+ | |||
+ | <cmath>[FGHIJ] = \frac{1+\sqrt{5}}{4} \cdot (1+tan^2(36^{\circ})) = \frac{1+\sqrt{5}}{4} \cdot (1+5-2\sqrt{5})</cmath> | ||
+ | <cmath>\implies [FGHIJ] = \frac{1+\sqrt{5}}{4} \cdot (6-2\sqrt{5}) = \frac{4\sqrt{5}-4}{4} = \sqrt{5}-1</cmath> | ||
+ | Therefore, <cmath>[FGHIJ] = \sqrt{5}-1 = \boxed{B}</cmath> | ||
~KingRavi | ~KingRavi | ||
− | ==Solution | + | ==Solution 3== |
<asy> | <asy> | ||
Line 199: | Line 422: | ||
A_s &= \left(\dfrac{r_s}{r_b}\right)^2A_b\\ | A_s &= \left(\dfrac{r_s}{r_b}\right)^2A_b\\ | ||
&=\left(\dfrac{a_s}{\cos{36^\circ} r_b}\right)^2 \left(1+\sqrt{5}\right)\\ | &=\left(\dfrac{a_s}{\cos{36^\circ} r_b}\right)^2 \left(1+\sqrt{5}\right)\\ | ||
− | &=\left(\dfrac{ | + | &=\left(\dfrac{a_s}{\dfrac{\phi}{2} r_b}\right)^2 \left(1+\sqrt{5}\right)\\ |
&=\left(\dfrac{1}{2 \dfrac{\phi}{2}}\right)^2 \left(1+\sqrt{5}\right)\\ | &=\left(\dfrac{1}{2 \dfrac{\phi}{2}}\right)^2 \left(1+\sqrt{5}\right)\\ | ||
&=\left(\dfrac{2}{\sqrt{5}+1}\right)^2 \left(1+\sqrt{5}\right)\\ | &=\left(\dfrac{2}{\sqrt{5}+1}\right)^2 \left(1+\sqrt{5}\right)\\ | ||
Line 209: | Line 432: | ||
~Technodoggo | ~Technodoggo | ||
− | ==Solution | + | ==Solution 4== |
Interestingly, we find that the pentagon we need is the one that is represented by the intersection of perpendicular bisectors of the connection from the center of the pentagon to one vertex. Through similar triangles and the golden ratio, we find that the side length ratio of the two pentagons is <math>\frac{\sqrt{5}-1}{2}</math> Thus, the answer is <math>\sqrt{5}+1 \cdot (\frac{\sqrt{5}-1}{2})^2 = \sqrt{5}-1</math>. <math>\boxed{\text{B}}</math> | Interestingly, we find that the pentagon we need is the one that is represented by the intersection of perpendicular bisectors of the connection from the center of the pentagon to one vertex. Through similar triangles and the golden ratio, we find that the side length ratio of the two pentagons is <math>\frac{\sqrt{5}-1}{2}</math> Thus, the answer is <math>\sqrt{5}+1 \cdot (\frac{\sqrt{5}-1}{2})^2 = \sqrt{5}-1</math>. <math>\boxed{\text{B}}</math> | ||
~andliu766 | ~andliu766 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Supplement (Calculating sin54/cos36 from Scratch)== | ==Supplement (Calculating sin54/cos36 from Scratch)== | ||
Line 240: | Line 442: | ||
[[File:2023AMC12BP25.png|center|250px]] | [[File:2023AMC12BP25.png|center|250px]] | ||
− | Construct golden ratio triangle <math>\triangle ABC</math> with <math>\angle A = 36^{\circ}</math>, <math>\angle B = \angle C = 72^{\circ}</math> and <math>\triangle BCD</math> with <math>\angle C = 36^{\circ}</math>, <math>\angle DBC = \angle BDC = 72^{\circ}</math>. WLOG, let <math>AB = AC = 1</math>, <math>BC = CD = AD = a</math>, <math>BD = 1-a</math>. <math>\triangle | + | Construct golden ratio triangle <math>\triangle ABC</math> with <math>\angle A = 36^{\circ}</math>, <math>\angle B = \angle C = 72^{\circ}</math> and <math>\triangle BCD</math> with <math>\angle C = 36^{\circ}</math>, <math>\angle DBC = \angle BDC = 72^{\circ}</math>. WLOG, let <math>AB = AC = 1</math>, <math>BC = CD = AD = a</math>, <math>BD = 1-a</math>. <math>\triangle BAC \sim \triangle BCD</math> |
<cmath>\frac{AC}{BC} = \frac{BC}{BD}, \quad \frac{1}{a} = \frac{a}{1-a}, \quad 1-a=a^2, \quad a^2 + a - 1 = 0</cmath> | <cmath>\frac{AC}{BC} = \frac{BC}{BD}, \quad \frac{1}{a} = \frac{a}{1-a}, \quad 1-a=a^2, \quad a^2 + a - 1 = 0</cmath> | ||
Line 246: | Line 448: | ||
<cmath>a = \frac{ -1 + \sqrt{1^2 - 4(-1) } }{2} = \frac{ \sqrt{5} -1 }{2}</cmath> | <cmath>a = \frac{ -1 + \sqrt{1^2 - 4(-1) } }{2} = \frac{ \sqrt{5} -1 }{2}</cmath> | ||
− | <cmath>\cos 36^{\circ} = \cos \angle A = \frac{AE}{AC} = \frac{ 1-a }{2} + | + | <cmath>\cos 36^{\circ} = \cos \angle A = \frac{AE}{AC} = \frac{ 1-a }{2} + a = \frac{ a + 1 }{2} = \frac{ \frac{ \sqrt{5} -1 }{2} + 1 }{2} = \frac{ \sqrt{5} + 1 }{4}</cmath> |
<cmath>\sin 54^{\circ} = \cos 36^{\circ} = \frac{ \sqrt{5} + 1 }{4}</cmath> | <cmath>\sin 54^{\circ} = \cos 36^{\circ} = \frac{ \sqrt{5} + 1 }{4}</cmath> | ||
Line 279: | Line 481: | ||
{{AMC10 box|year=2023|ab=B|num-b=24|after=Last Problem}} | {{AMC10 box|year=2023|ab=B|num-b=24|after=Last Problem}} | ||
{{AMC12 box|year=2023|ab=B|num-b=24|after=Last Problem}} | {{AMC12 box|year=2023|ab=B|num-b=24|after=Last Problem}} | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:17, 15 August 2024
- The following problem is from both the 2023 AMC 10B #25 and 2023 AMC 12B #25, so both problems redirect to this page.
Contents
Problem
A regular pentagon with area is printed on paper and cut out. The five vertices of the pentagon are folded into the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?
Solution 1
Let the original pentagon be centered at . The dashed lines represent the fold lines. WLOG, let's focus on vertex .
Since is folded onto , where is the intersection of and the creaseline between and . Note that the inner pentagon is regular, and therefore similar to the original pentagon, due to symmetry.
Because of their similarity, the ratio of the inner pentagon's area to that of the outer pentagon can be represented by
Option 1: Knowledge
Remember that .
Option 2: Angle Identities
Let the inner pentagon be .
-Dissmo
Solution 2
We can find the area of the red pentagon by taking the area of the total pentagon and subtracting the area outside the red pentagon.
The area outside the red pentagon is the sum of the larger isosceles triangles, but this double counts the overlapping regions of the small isosceles triangles, so we have to subtract those out.
We have
Lets focus on finding the area of each individual triangle:
Notice that we have no information about the side length, so instead we let the side length be . Now we can drop an altitude from to the base of the triangle, and we know this altitude must split the base of the pentagon in half, so we can create a right triangle. Furthermore, draw a line from to . This must bisect angle which is degrees, so we create triangles. Specifically, we know , , and because is isosceles and we know the vertex angle is . We encode this information in the diagram below:
Since is isosceles, the area of is half the area of . Similarly, the area of is half that of . Thus:
We also know that since we dropped an altitude from to , the area of must be half of a fifth of the total area of the pentagon. Therefore we can rewrite the above equation as
Now notice that by AA similarity. Therefore, if we can write the areas of the latter two triangles as a ratio of the first triangle, we can express the whole equation in terms of , and by extension , which we know. To find these ratios, we can find the side length ratios and square them because the triangles are similar.
We already know , so let's try to find it's analogous side for and . These sides are and , respectively.
First, , so . Then notice that because we have to fold to hit , so the folding crease has to be exactly halfway between and . Therefore,
Now the ratio between the area of two similar triangles is the square of the ratio of their analogous side lengths. Thus
Now let's move on and calculate the ratio of the other side length. Calculating is slightly tricker. First, we find : . Now since is isosceles, and .
Now . Now note that because opposite over adjacent cancel each other out in a right triangle. Thus,
Now,
Now we go back to our first equation and plug in our values:
Note .
Also note that . Thus .
Now all that remains is to find . We can use the tan addition formula to find the general form of or remember question 25 from this year's AMC 12A. We have that .
Plug in . Then we have Now let . We have the equation Where we let . Using the quadratic formula, we have Now since , , which is what we were looking for. Notice that and , so is between and , and so is it's square. Thus , not the other root.
Finally:
Therefore,
~KingRavi
Solution 3
Let and be the circumradius of the big and small pentagon, respectively. Let be the apothem of the smaller pentagon and and be the areas of the smaller and larger pentagon, respectively.
From the diagram: ~Technodoggo
Solution 4
Interestingly, we find that the pentagon we need is the one that is represented by the intersection of perpendicular bisectors of the connection from the center of the pentagon to one vertex. Through similar triangles and the golden ratio, we find that the side length ratio of the two pentagons is Thus, the answer is . ~andliu766
Supplement (Calculating sin54/cos36 from Scratch)
Method 1:
Construct golden ratio triangle with , and with , . WLOG, let , , .
Method 2:
As explained here,
Video Solution 1 by SpreadTheMathLove
https://www.youtube.com/watch?v=ROVjN3oYLbQ
Video Solution 2 by OmegaLearn
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2023 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.