Difference between revisions of "2005 AIME I Problems/Problem 7"
Einstein00 (talk | contribs) (→Solution) |
Einstein00 (talk | contribs) (→Solution 3) |
||
Line 15: | Line 15: | ||
=== Solution 3 === | === Solution 3 === | ||
− | Extend <math>BC</math> and <math>AD</math> to meet at point <math>E</math>, forming an equilateral triangle <math>\triangle ABE</math>. Draw a line from <math>C</math> parallel to <math>AB</math> so that it intersects <math>AD</math> at point <math>F</math>. Then, apply [[Stewart's Theorem]] on <math>\triangle CFE</math>. Let <math>CE=x</math>. <cmath>2x(x-2) + 12^2x = 2x^2 + x^2(x-2)</cmath> <cmath>x^3 - 2x^2 - 140x | + | Extend <math>BC</math> and <math>AD</math> to meet at point <math>E</math>, forming an equilateral triangle <math>\triangle ABE</math>. Draw a line from <math>C</math> parallel to <math>AB</math> so that it intersects <math>AD</math> at point <math>F</math>. Then, apply [[Stewart's Theorem]] on <math>\triangle CFE</math>. Let <math>CE=x</math>. <cmath>2x(x-2) + 12^2x = 2x^2 + x^2(x-2)</cmath> <cmath>x^3 - 2x^2 - 140x = 0</cmath> By the quadratic formula (discarding the negative result), <math>x = 1 + \sqrt{141}</math>, giving <math>AB = 9 + \sqrt{141}</math> for a final answer of <math>p+q=150</math>. |
== See also == | == See also == |
Revision as of 23:33, 28 December 2011
Problem
In quadrilateral and
Given that
where
and
are positive integers, find
Solution
Solution 1

Draw the perpendiculars from and
to
, labeling the intersection points as
and
. This forms 2
right triangles, so
and
. Also, if we draw the horizontal line extending from
to a point
on the line
, we find another right triangle
.
. The Pythagorean Theorem yields that
, so
. Therefore,
, and
.
Solution 2

Extend and
to an intersection at point
. We get an equilateral triangle
. We denote the length of a side of
as
and solve for it using the Law of Cosines:
This simplifies to
; the quadratic formula yields the (discard the negative result) same result of
.
Solution 3
Extend and
to meet at point
, forming an equilateral triangle
. Draw a line from
parallel to
so that it intersects
at point
. Then, apply Stewart's Theorem on
. Let
.
By the quadratic formula (discarding the negative result),
, giving
for a final answer of
.
See also
2005 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |