Difference between revisions of "1952 AHSME Problems"

(Problem 8)
(Problem 9)
Line 68: Line 68:
 
== Problem 9 ==
 
== Problem 9 ==
  
<math> \textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ } </math>
+
If <math> m=\frac{cab}{a-b} </math>, then <math> b </math> equals:
 +
 
 +
<math> \textbf{(A) \ }\frac{m(a-b)}{ca}  \qquad \textbf{(B) \ }\frac{cab-ma}{-m} \qquad \textbf{(C) \ }\frac{1}{1+c} \qquad \textbf{(D) \ }\frac{ma}{m+ca} \qquad \textbf{(E) \ }\frac{m+ca}{ma} </math>
  
 
[[1952 AHSME Problems/Problem 9|Solution]]
 
[[1952 AHSME Problems/Problem 9|Solution]]

Revision as of 14:57, 2 January 2014

Problem 1

If the radius of a circle is a rational number, its area is given by a number which is:

$\textbf{(A)\ } \text{rational}  \qquad \textbf{(B)\ } \text{irrational} \qquad \textbf{(C)\ } \text{integral} \qquad \textbf{(D)\ } \text{a perfect square }\qquad \textbf{(E)\ } \text{none of these}$

Solution

Problem 2

Two high school classes took the same test. One class of $20$ students made an average grade of $80\%$; the other class of $30$ students made an average grade of $70\%$. The average grade for all students in both classes is:

$\textbf{(A)}\ 75\%\qquad \textbf{(B)}\ 74\%\qquad \textbf{(C)}\ 72\%\qquad \textbf{(D)}\ 77\%\qquad \textbf{(E)\ }\text{none of these}$

Solution

Problem 3

The expression $a^3-a^{-3}$ equals:

$\textbf{(A) \ }\left(a-\frac{1}{a}\right)\left(a^2+1+\frac{1}{a^2}\right) \qquad \textbf{(B) \ }\left(\frac{1}{a}-a\right)\left(a^2-1+\frac{1}{a^2}\right) \qquad \textbf{(C) \ }\left(a-\frac{1}{a}\right)\left(a^2-2+\frac{1}{a^2}\right) \qquad$ $\textbf{(D) \ }\left(\frac{1}{a}-a\right)\left(\frac{1}{a^2}+1+a^2\right) \qquad \textbf{(E) \ }\text{none of these}$

Solution

Problem 4

The cost $C$ of sending a parcel post package weighing $P$ pounds, $P$ an integer, is $10$ cents for the first pound and $3$ cents for each additional pound. The formula for the cost is:

$\textbf{(A) \ }C=10+3P \qquad \textbf{(B) \ }C=10P+3 \qquad \textbf{(C) \ }C=10+3(P-1) \qquad$

$\textbf{(D) \ }C=9+3P \qquad \textbf{(E) \ }C=10P-7$

Solution

Problem 5

The points $(6,12)$ and $(0,-6)$ are connected by a straight line. Another point on this line is:

$\textbf{(A) \ }(3,3)  \qquad \textbf{(B) \ }(2,1) \qquad \textbf{(C) \ }(7,16) \qquad \textbf{(D) \ }(-1,-4) \qquad \textbf{(E) \ }(-3,-8)$

Solution

Problem 6

The difference of the roots of $x^2-7x-9=0$ is:

$\textbf{(A) \ }+7  \qquad \textbf{(B) \ }+\frac{7}{2} \qquad \textbf{(C) \ }+9 \qquad \textbf{(D) \ }2\sqrt{85} \qquad \textbf{(E) \ }\sqrt{85}$

Solution

Problem 7

When simplified, $(x^{-1}+y^{-1})^{-1}$ is equal to:

$\textbf{(A) \ }x+y  \qquad \textbf{(B) \ }\frac{xy}{x+y} \qquad \textbf{(C) \ }xy \qquad \textbf{(D) \ }\frac{1}{xy} \qquad \textbf{(E) \ }\frac{x+y}{xy}$

Solution

Problem 8

Two equal circles in the same plane cannot have the following number of common tangents.

$\textbf{(A) \ }1  \qquad \textbf{(B) \ }2 \qquad \textbf{(C) \ }3 \qquad \textbf{(D) \ }4 \qquad \textbf{(E) \ }\text{none of these}$

Solution

Problem 9

If $m=\frac{cab}{a-b}$, then $b$ equals:

$\textbf{(A) \ }\frac{m(a-b)}{ca}  \qquad \textbf{(B) \ }\frac{cab-ma}{-m} \qquad \textbf{(C) \ }\frac{1}{1+c} \qquad \textbf{(D) \ }\frac{ma}{m+ca} \qquad \textbf{(E) \ }\frac{m+ca}{ma}$

Solution

Problem 10

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 11

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 12

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 13

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 14

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 15

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 16

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 17

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 18

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 19

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 20

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 21

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 22

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 23

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 24

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 25

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 26

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 27

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 28

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 29

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 30

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 31

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 32

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 33

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 34

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 35

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 36

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 37

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 38

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 39

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 40

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 41

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 42

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 43

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 44

If an integer of two digits is $k$ times the sum of its digits, the number formed by interchanging the the digits is the sum of the digits multiplied by

$\textbf{(A) \ } 9-k  \qquad \textbf{(B) \ } 10-k \qquad \textbf{(C) \ } 11-k \qquad \textbf{(D) \ } k-1 \qquad \textbf{(E) \ } k+1$

Solution

Problem 45

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 46

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 47

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 48

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 49

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

Problem 50

$\textbf{(A) \ }  \qquad \textbf{(B) \ } \qquad \textbf{(C) \ } \qquad \textbf{(D) \ }\qquad \textbf{(E) \ }$

Solution

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png