Difference between revisions of "1993 AJHSME Problems"

(See also)
m (Problem 24)
Line 402: Line 402:
 
What number is directly above <math>142</math> in this array of numbers?
 
What number is directly above <math>142</math> in this array of numbers?
  
<cmath>\begin{tabular}{cccccc}
+
<cmath>\begin{array}{cccccc}
 
  & & & 1 & & \
 
  & & & 1 & & \
 
& & 2 & 3 & 4 & \
 
& & 2 & 3 & 4 & \
 
& 5 & 6 & 7 & 8 & 9 \
 
& 5 & 6 & 7 & 8 & 9 \
 
10 & 11 & 12 & \cdots & & \
 
10 & 11 & 12 & \cdots & & \
\end{tabular}</cmath>
+
\end{array}</cmath>
  
 
<math>\text{(A)}\ 99 \qquad \text{(B)}\ 119 \qquad \text{(C)}\ 120 \qquad \text{(D)}\ 121 \qquad \text{(E)}\ 122</math>
 
<math>\text{(A)}\ 99 \qquad \text{(B)}\ 119 \qquad \text{(C)}\ 120 \qquad \text{(D)}\ 121 \qquad \text{(E)}\ 122</math>

Revision as of 18:38, 10 March 2015

Problem 1

Which pair of numbers does NOT have a product equal to $36$?

$\text{(A)}\ \{ -4,-9\} \qquad \text{(B)}\ \{ -3,-12\} \qquad \text{(C)}\ \left\{ \dfrac{1}{2},-72\right\} \qquad \text{(D)}\ \{ 1,36\} \qquad \text{(E)}\ \left\{\dfrac{3}{2},24\right\}$

Solution

Problem 2

When the fraction $\dfrac{49}{84}$ is expressed in simplest form, then the sum of the numerator and the denominator will be

$\text{(A)}\ 11 \qquad \text{(B)}\ 17 \qquad \text{(C)}\ 19 \qquad \text{(D)}\ 33 \qquad \text{(E)}\ 133$

Solution

Problem 3

Which of the following numbers has the largest prime factor?

$\text{(A)}\ 39 \qquad \text{(B)}\ 51 \qquad \text{(C)}\ 77 \qquad \text{(D)}\ 91 \qquad \text{(E)}\ 121$

Solution

Problem 4

$1000\times 1993 \times 0.1993 \times 10 =$

$\text{(A)}\ 1.993\times 10^3 \qquad \text{(B)}\ 1993.1993 \qquad \text{(C)}\ (199.3)^2 \qquad \text{(D)}\ 1,993,001.993 \qquad \text{(E)}\ (1993)^2$

Solution

Problem 5

Which one of the following bar graphs could represent the data from the circle graph?

[asy] unitsize(36); draw(circle((0,0),1),gray); fill((0,0)--arc((0,0),(0,-1),(1,0))--cycle,gray); fill((0,0)--arc((0,0),(1,0),(0,1))--cycle,black); [/asy]

[asy] unitsize(4);  fill((1,0)--(1,15)--(5,15)--(5,0)--cycle,gray); fill((6,0)--(6,15)--(10,15)--(10,0)--cycle,black); draw((11,0)--(11,20)--(15,20)--(15,0));  fill((26,0)--(26,15)--(30,15)--(30,0)--cycle,gray); fill((31,0)--(31,15)--(35,15)--(35,0)--cycle,black); draw((36,0)--(36,15)--(40,15)--(40,0));  fill((51,0)--(51,10)--(55,10)--(55,0)--cycle,gray); fill((56,0)--(56,10)--(60,10)--(60,0)--cycle,black); draw((61,0)--(61,20)--(65,20)--(65,0));  fill((76,0)--(76,10)--(80,10)--(80,0)--cycle,gray); fill((81,0)--(81,15)--(85,15)--(85,0)--cycle,black); draw((86,0)--(86,20)--(90,20)--(90,0));  fill((101,0)--(101,15)--(105,15)--(105,0)--cycle,gray); fill((106,0)--(106,10)--(110,10)--(110,0)--cycle,black); draw((111,0)--(111,20)--(115,20)--(115,0));  for(int a = 0; a < 5; ++a) {     draw((25*a,21)--(25*a,0)--(25*a+16,0)); }  label("(A)",(8,21),N); label("(B)",(33,21),N); label("(C)",(58,21),N); label("(D)",(83,21),N); label("(E)",(108,21),N); [/asy]

Solution

Problem 6

A can of soup can feed $3$ adults or $5$ children. If there are $5$ cans of soup and $15$ children are fed, then how many adults would the remaining soup feed?

$\text{(A)}\ 5 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 25$

Solution

Problem 7

$3^3+3^3+3^3 =$

$\text{(A)}\ 3^4 \qquad \text{(B)}\ 9^3 \qquad \text{(C)}\ 3^9 \qquad \text{(D)}\ 27^3 \qquad \text{(E)}\ 3^{27}$

Solution

Problem 8

To control her blood pressure, Jill's grandmother takes one half of a pill every other day. If one supply of medicine contains $60$ pills, then the supply of medicine would last approximately

$\text{(A)}\ 1\text{ month} \qquad \text{(B)}\ 4\text{ months} \qquad \text{(C)}\ 6\text{ months} \qquad \text{(D)}\ 8\text{ months} \qquad \text{(E)}\ 1\text{ year}$

Solution

Problem 9

Consider the operation $*$ defined by the following table:

\[\begin{tabular}{c|cccc} * & 1 & 2 & 3 & 4 \\ \hline 1 & 1 & 2 & 3 & 4 \\ 2 & 2 & 4 & 1 & 3 \\ 3 & 3 & 1 & 4 & 2 \\ 4 & 4 & 3 & 2 & 1 \end{tabular}\]

For example, $3*2=1$. Then $(2*4)*(1*3)=$

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 5$

Solution

Problem 10

This line graph represents the price of a trading card during the first $6$ months of $1993$.

[asy] unitsize(18); for (int a = 0; a <= 6; ++a) {     draw((4*a,0)--(4*a,10)); } for (int a = 0; a <= 5; ++a) {     draw((0,2*a)--(24,2*a)); } draw((0,5)--(4,4)--(8,8)--(12,3)--(16,9)--(20,6)--(24,2),linewidth(1.5));  label("$Jan$",(2,0),S); label("$Feb$",(6,0),S); label("$Mar$",(10,0),S); label("$Apr$",(14,0),S); label("$May$",(18,0),S); label("$Jun$",(22,0),S); label("$\textbf{1993 PRICES FOR A TRADING CARD}$",(12,10),N);  label("$\begin{tabular}{c}\textbf{P} \\ \textbf{R} \\ \textbf{I} \\ \textbf{C} \\ \textbf{E} \end{tabular}$",(-2,5),W); label("$1$",(0,2),W); label("$2$",(0,4),W); label("$3$",(0,6),W); label("$4$",(0,8),W); label("$5$",(0,10),W); [/asy]

The greatest monthly drop in price occurred during

$\text{(A)}\ \text{January} \qquad \text{(B)}\ \text{March} \qquad \text{(C)}\ \text{April} \qquad \text{(D)}\ \text{May} \qquad \text{(E)}\ \text{June}$

Solution

Problem 11

Consider this histogram of the scores for $81$ students taking a test:

[asy] unitsize(12); draw((0,0)--(26,0)); draw((1,1)--(25,1)); draw((3,2)--(25,2)); draw((5,3)--(23,3)); draw((5,4)--(21,4)); draw((7,5)--(21,5)); draw((9,6)--(21,6)); draw((11,7)--(19,7)); draw((11,8)--(19,8)); draw((11,9)--(19,9)); draw((11,10)--(19,10)); draw((13,11)--(19,11)); draw((13,12)--(19,12)); draw((13,13)--(17,13)); draw((13,14)--(17,14)); draw((15,15)--(17,15)); draw((15,16)--(17,16));  draw((1,0)--(1,1)); draw((3,0)--(3,2)); draw((5,0)--(5,4)); draw((7,0)--(7,5)); draw((9,0)--(9,6)); draw((11,0)--(11,10)); draw((13,0)--(13,14)); draw((15,0)--(15,16)); draw((17,0)--(17,16)); draw((19,0)--(19,12)); draw((21,0)--(21,6)); draw((23,0)--(23,3)); draw((25,0)--(25,2));  for (int a = 1; a < 13; ++a) {     draw((2*a,-.25)--(2*a,.25)); }  label("$40$",(2,-.25),S); label("$45$",(4,-.25),S); label("$50$",(6,-.25),S); label("$55$",(8,-.25),S); label("$60$",(10,-.25),S); label("$65$",(12,-.25),S); label("$70$",(14,-.25),S); label("$75$",(16,-.25),S); label("$80$",(18,-.25),S); label("$85$",(20,-.25),S); label("$90$",(22,-.25),S); label("$95$",(24,-.25),S);  label("$1$",(2,1),N); label("$2$",(4,2),N); label("$4$",(6,4),N); label("$5$",(8,5),N); label("$6$",(10,6),N); label("$10$",(12,10),N); label("$14$",(14,14),N); label("$16$",(16,16),N); label("$12$",(18,12),N); label("$6$",(20,6),N); label("$3$",(22,3),N); label("$2$",(24,2),N);  label("Number",(4,8),N); label("of Students",(4,7),N);  label("$\textbf{STUDENT TEST SCORES}$",(14,18),N); [/asy]

The median is in the interval labeled

$\text{(A)}\ 60 \qquad \text{(B)}\ 65 \qquad \text{(C)}\ 70 \qquad \text{(D)}\ 75 \qquad \text{(E)}\ 80$

Solution

Problem 12

If each of the three operation signs, $+$, $-$, $\times$, is used exactly ONCE in one of the blanks in the expression

\[5\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}4\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}6\hspace{1 mm}\underline{\hspace{4 mm}}\hspace{1 mm}3\]

then the value of the result could equal

$\text{(A)}\ 9 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 19$

Solution

Problem 13

The word "HELP" in block letters is painted in black with strokes $1$ unit wide on a $5$ by $15$ rectangular white sign with dimensions as shown. The area of the white portion of the sign, in square units, is

[asy] unitsize(12); fill((0,0)--(0,5)--(1,5)--(1,3)--(2,3)--(2,5)--(3,5)--(3,0)--(2,0)--(2,2)--(1,2)--(1,0)--cycle,black); fill((4,0)--(4,5)--(7,5)--(7,4)--(5,4)--(5,3)--(7,3)--(7,2)--(5,2)--(5,1)--(7,1)--(7,0)--cycle,black); fill((8,0)--(8,5)--(9,5)--(9,1)--(11,1)--(11,0)--cycle,black); fill((12,0)--(12,5)--(15,5)--(15,2)--(13,2)--(13,0)--cycle,black); fill((13,3)--(14,3)--(14,4)--(13,4)--cycle,white); draw((0,0)--(15,0)--(15,5)--(0,5)--cycle); label("$5\left\{ \begin{tabular}{c} \\ \\ \\ \\ \end{tabular}\right.$",(1,2.5),W); label(rotate(90)*"$\{$",(0.5,0.1),S); label("$1$",(0.5,-0.6),S); label(rotate(90)*"$\{$",(3.5,0.1),S); label("$1$",(3.5,-0.6),S); label(rotate(90)*"$\{$",(7.5,0.1),S); label("$1$",(7.5,-0.6),S); label(rotate(90)*"$\{$",(11.5,0.1),S); label("$1$",(11.5,-0.6),S); label(rotate(270)*"$\left\{ \begin{tabular}{c} \\ \\ \end{tabular}\right.$",(1.5,4),N); label("$3$",(1.5,5.8),N); label(rotate(270)*"$\left\{ \begin{tabular}{c} \\ \\ \end{tabular}\right.$",(5.5,4),N); label("$3$",(5.5,5.8),N); label(rotate(270)*"$\left\{ \begin{tabular}{c} \\ \\ \end{tabular}\right.$",(9.5,4),N); label("$3$",(9.5,5.8),N); label(rotate(270)*"$\left\{ \begin{tabular}{c} \\ \\ \end{tabular}\right.$",(13.5,4),N); label("$3$",(13.5,5.8),N); label("$\left. \begin{tabular}{c} \\ \end{tabular}\right\} 2$",(14,1),E); [/asy]

$\text{(A)}\ 30 \qquad \text{(B)}\ 32 \qquad \text{(C)}\ 34 \qquad \text{(D)}\ 36 \qquad \text{(E)}\ 38$

Solution

Problem 14

The nine squares in the table shown are to be filled so that every row and every column contains each of the numbers $1,2,3$. Then $A+B=$

\[\begin{tabular}{|c|c|c|} \hline 1 & & \\ \hline  & 2 & A \\ \hline  & & B \\ \hline \end{tabular}\]

$\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 6$

Solution

Problem 15

The arithmetic mean (average) of four numbers is $85$. If the largest of these numbers is $97$, then the mean of the remaining three numbers is

$\text{(A)}\ 81.0 \qquad \text{(B)}\ 82.7 \qquad \text{(C)}\ 83.0 \qquad \text{(D)}\ 84.0 \qquad \text{(E)}\ 84.3$

Solution

Problem 16

$\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3}}} =$

$\text{(A)}\ \dfrac{1}{6} \qquad \text{(B)}\ \dfrac{3}{10} \qquad \text{(C)}\ \dfrac{7}{10} \qquad \text{(D)}\ \dfrac{5}{6} \qquad \text{(E)}\ \dfrac{10}{3}$

Solution

Problem 17

Square corners, $5$ units on a side, are removed from a $20$ unit by $30$ unit rectangular sheet of cardboard. The sides are then folded to form an open box. The surface area, in square units, of the interior of the box is

[asy] fill((0,0)--(20,0)--(20,5)--(0,5)--cycle,lightgray); fill((20,0)--(20+5*sqrt(2),5*sqrt(2))--(20+5*sqrt(2),5+5*sqrt(2))--(20,5)--cycle,lightgray); draw((0,0)--(20,0)--(20,5)--(0,5)--cycle); draw((0,5)--(5*sqrt(2),5+5*sqrt(2))--(20+5*sqrt(2),5+5*sqrt(2))--(20,5)); draw((20+5*sqrt(2),5+5*sqrt(2))--(20+5*sqrt(2),5*sqrt(2))--(20,0)); draw((5*sqrt(2),5+5*sqrt(2))--(5*sqrt(2),5*sqrt(2))--(5,5),dashed); draw((5*sqrt(2),5*sqrt(2))--(15+5*sqrt(2),5*sqrt(2)),dashed); [/asy]

$\text{(A)}\ 300 \qquad \text{(B)}\ 500 \qquad \text{(C)}\ 550 \qquad \text{(D)}\ 600 \qquad \text{(E)}\ 1000$

Solution

Problem 18

The rectangle shown has length $AC=32$, width $AE=20$, and $B$ and $F$ are midpoints of $\overline{AC}$ and $\overline{AE}$, respectively. The area of quadrilateral $ABDF$ is

[asy] pair A,B,C,D,EE,F; A = (0,20); B = (16,20); C = (32,20); D = (32,0); EE = (0,0); F = (0,10); draw(A--C--D--EE--cycle); draw(B--D--F); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); label("$A$",A,NW); label("$B$",B,N); label("$C$",C,NE); label("$D$",D,SE); label("$E$",EE,SW); label("$F$",F,W); [/asy]

$\text{(A)}\ 320 \qquad \text{(B)}\ 325 \qquad \text{(C)}\ 330 \qquad \text{(D)}\ 335 \qquad \text{(E)}\ 340$

Solution

Problem 19

$(1901+1902+1903+\cdots + 1993) - (101+102+103+\cdots + 193) =$

$\text{(A)}\ 167,400 \qquad \text{(B)}\ 172,050 \qquad \text{(C)}\ 181,071 \qquad \text{(D)}\ 199,300 \qquad \text{(E)}\ 362,142$

Solution

Problem 20

When $10^{93}-93$ is expressed as a single whole number, the sum of the digits is

$\text{(A)}\ 10 \qquad \text{(B)}\ 93 \qquad \text{(C)}\ 819 \qquad \text{(D)}\ 826 \qquad \text{(E)}\ 833$

Solution

Problem 21

If the length of a rectangle is increased by $20\%$ and its width is increased by $50\%$, then the area is increased by

$\text{(A)}\ 10\% \qquad \text{(B)}\ 30\% \qquad \text{(C)}\ 70\% \qquad \text{(D)}\ 80\% \qquad \text{(E)}\ 100\%$

Solution

Problem 22

Pat Peano has plenty of 0's, 1's, 3's, 4's, 5's, 6's, 7's, 8's and 9's, but he has only twenty-two 2's. How far can he number the pages of his scrapbook with these digits?

$\text{(A)}\ 22 \qquad \text{(B)}\ 99 \qquad \text{(C)}\ 112 \qquad \text{(D)}\ 119 \qquad \text{(E)}\ 199$

Solution

Problem 23

Five runners, $P$, $Q$, $R$, $S$, $T$, have a race, and $P$ beats $Q$, $P$ beats $R$, $Q$ beats $S$, and $T$ finishes after $P$ and before $Q$. Who could NOT have finished third in the race?

$\text{(A)}\ P\text{ and }Q \qquad \text{(B)}\ P\text{ and }R \qquad \text{(C)}\ P\text{ and }S \qquad \text{(D)}\ P\text{ and }T \qquad \text{(E)}\ P,S\text{ and }T$

Solution

Problem 24

What number is directly above $142$ in this array of numbers?

\[\begin{array}{cccccc}  & & & 1 & & \\ & & 2 & 3 & 4 & \\ & 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & \cdots & & \\ \end{array}\]

$\text{(A)}\ 99 \qquad \text{(B)}\ 119 \qquad \text{(C)}\ 120 \qquad \text{(D)}\ 121 \qquad \text{(E)}\ 122$

Solution

Problem 25

A checkerboard consists of one-inch squares. A square card, $1.5$ inches on a side, is placed on the board so that it covers part or all of the area of each of $n$ squares. The maximum possible value of $n$ is

$\text{(A)}\ 4\text{ or }5 \qquad \text{(B)}\ 6\text{ or }7\qquad \text{(C)}\ 8\text{ or }9 \qquad \text{(D)}\ 10\text{ or }11 \qquad \text{(E)}\ 12\text{ or more}$

Solution

See also

1993 AJHSME (ProblemsAnswer KeyResources)
Preceded by
1992 AJHSME
Followed by
1994 AJHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png