Difference between revisions of "2002 AMC 10A Problems/Problem 25"
(→Solution) |
(→Solution 2) |
||
Line 80: | Line 80: | ||
Therefore <math>A'BC</math> is a well-known <math>(5,12,13)</math> right triangle. Its area is <math>[A'BC]=\frac{A'C\cdot BC}2 = \frac{5\cdot 12}2 = 30</math>, and therefore its altitude <math>CC'</math> is <math>\frac{[A'BC]}{A'B} = \frac{60}{13}</math>. | Therefore <math>A'BC</math> is a well-known <math>(5,12,13)</math> right triangle. Its area is <math>[A'BC]=\frac{A'C\cdot BC}2 = \frac{5\cdot 12}2 = 30</math>, and therefore its altitude <math>CC'</math> is <math>\frac{[A'BC]}{A'B} = \frac{60}{13}</math>. | ||
− | Now the area of the original trapezoid is <math>\frac{(AB+CD)\cdot CC'}2 = \frac{91 \cdot 60}{13 \cdot 2} = 7\cdot 30 = \boxed{210}</math> | + | Now the area of the original trapezoid is <math>\frac{(AB+CD)\cdot CC'}2 = \frac{91 \cdot 60}{13 \cdot 2} = 7\cdot 30 = \boxed{\mathrm{(C)}\ 210}</math> |
== See also == | == See also == |
Revision as of 12:27, 26 January 2016
Contents
[hide]Problem
In trapezoid with bases and , we have , , , and . The area of is
Solution
Solution 1
It shouldn't be hard to use trigonometry to bash this and find the height, but there is a much easier way. Extend and to meet at point :
Since we have , with the ratio of proportionality being . Thus So the sides of are , which we recognize to be a right triangle. Therefore (we could simplify some of the calculation using that the ratio of areas is equal to the ratio of the sides squared),
Solution 2
Draw altitudes from points and :
Translate the triangle so that coincides with . We get the following triangle:
The length of in this triangle is equal to the length of the original , minus the length of . Thus .
Therefore is a well-known right triangle. Its area is , and therefore its altitude is .
Now the area of the original trapezoid is
See also
2002 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.