Difference between revisions of "2012 AMC 12B Problems/Problem 21"
Mathman523 (talk | contribs) (→Problem 21) |
Mathman523 (talk | contribs) (→Problem 21) |
||
Line 23: | Line 23: | ||
</asy> | </asy> | ||
− | (diagram | + | (diagram by djmathman) |
==Solution== | ==Solution== |
Revision as of 15:56, 30 December 2016
Problem 21
Square is inscribed in equiangular hexagon with on , on , and on . Suppose that , and . What is the side-length of the square?
(diagram by djmathman)
Solution
Extend and so that they meet at . Then , so and therefore is parallel to . Also, since is parallel and equal to , we get , hence is congruent to . We now get .
Let , , and .
Drop a perpendicular line from to the line of that meets line at , and a perpendicular line from to the line of that meets at , then is congruent to since is complementary to . Then we have the following equations:
The sum of these two yields that
So, we can now use the law of cosines in :
Therefore
See Also
2012 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.