Difference between revisions of "2018 AMC 10B Problems/Problem 1"
m (Fixed a bunch of typos) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Kate bakes 20-inch by 18-inch pan of cornbread. The cornbread is cut into pieces that measure 2 inches by 2 inches. How many pieces of cornbread does the pan contain? | + | Kate bakes a <math>20</math>-inch by <math>18</math>-inch pan of cornbread. The cornbread is cut into pieces that measure <math>2</math> inches by <math>2</math> inches. How many pieces of cornbread does the pan contain? |
<math>\textbf{(A) } 90 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 180 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 360</math> | <math>\textbf{(A) } 90 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 180 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 360</math> | ||
Line 10: | Line 10: | ||
== Solution 2 == | == Solution 2 == | ||
− | By dividing | + | By dividing each of the dimensions by <math>2</math>, we get a <math>10\times9</math> grid which makes <math>90</math> pieces. Thus, the answer is <math>\boxed{A}</math>. |
==See Also== | ==See Also== |
Revision as of 17:52, 21 April 2018
Contents
[hide]Problem
Kate bakes a -inch by -inch pan of cornbread. The cornbread is cut into pieces that measure inches by inches. How many pieces of cornbread does the pan contain?
Solution 1
The area of the pan is = . Since the area of each piece is , there are pieces. Thus, the answer is .
Solution 2
By dividing each of the dimensions by , we get a grid which makes pieces. Thus, the answer is .
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.