Difference between revisions of "2007 iTest Problems/Problem 58"
(Created page with "== Problem == Let <math>T=\text{TNFTPP}</math>. For natural numbers <math>k,n\geq 2</math>, we define <cmath>S(k,n)=\left\lfloor\frac{2^{n+1}+1}{2^{n-1}+1}\right\rfloor+\left\lfl...") |
Rockmanex3 (talk | contribs) m (→Solution) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | == Problem == | + | ''The following problem is from the Ultimate Question of the [[2007 iTest]], where solving this problem required the answer of a previous problem. When the problem is rewritten, the T-value is substituted.'' |
− | + | ||
+ | ==Problem== | ||
+ | |||
+ | For natural numbers <math>k,n\geq 2</math>, we define | ||
<cmath>S(k,n)=\left\lfloor\frac{2^{n+1}+1}{2^{n-1}+1}\right\rfloor+\left\lfloor\frac{3^{n+1}+1}{3^{n-1}+1}\right\rfloor+\cdots+\left\lfloor\frac{k^{n+1}+1}{k^{n-1}+1}\right\rfloor</cmath> | <cmath>S(k,n)=\left\lfloor\frac{2^{n+1}+1}{2^{n-1}+1}\right\rfloor+\left\lfloor\frac{3^{n+1}+1}{3^{n-1}+1}\right\rfloor+\cdots+\left\lfloor\frac{k^{n+1}+1}{k^{n-1}+1}\right\rfloor</cmath> | ||
− | Compute the value of <math>S(10, | + | Compute the value of <math>S(10,112)-S(10,55)+S(10,2)</math>. |
+ | |||
+ | ==Solution== | ||
+ | |||
+ | The function <math>S(k,n)</math> can be rewritten as | ||
+ | <cmath>\sum_{j=2}^{k} \left\lfloor\frac{j^{n+1}+1}{j^{n-1}+1}\right\rfloor</cmath> | ||
+ | |||
+ | Let <math>x = j^{n-1}</math>. With the substitution, each similar part becomes | ||
+ | <cmath>\sum_{j=2}^{k} \left\lfloor\frac{j^2 \cdot x+1}{x+1}\right\rfloor</cmath> | ||
+ | Performing polynomial division results in | ||
+ | <cmath>\sum_{j=2}^{k} \left\lfloor j^2 + \frac{1 - j^2}{x+1}\right\rfloor</cmath> | ||
+ | <cmath>\sum_{j=2}^{k} \left\lfloor j^2 - \frac{j^2 - 1}{j^{n-1}+1}\right\rfloor</cmath> | ||
+ | When <math>n = 112</math> or <math>n = 55</math>, then <math>\frac{j^2 - 1}{j^{n-1}+1}</math> is close to zero, which means that <math>\left\lfloor j^2 - \frac{j^2 - 1}{j^{n-1}+1}\right\rfloor</math> would be the same for a given <math>j</math> when <math>n = 112</math> or <math>n = 55</math>. Thus, <math>S(10,112) - S(10,55) = 0</math>. | ||
+ | |||
+ | <br> | ||
+ | That means <math>S(10,112) - S(10,55) + S(10,2) = S(10,2)</math>, and that equals | ||
+ | <cmath>\sum_{j=2}^{10} \left\lfloor j^2 - \frac{j^2 - 1}{j+1}\right\rfloor</cmath> | ||
+ | <cmath>\sum_{j=2}^{10} \left\lfloor j^2 - (j-1) \right\rfloor</cmath> | ||
+ | <cmath>\sum_{j=2}^{10} j^2 - \sum_{j=2}^{10} (j-1)</cmath> | ||
+ | <cmath>(4+9 \cdots 100) - (1+2 \cdots 9)</cmath> | ||
+ | <cmath>(\frac{10 \cdot 11 \cdot 21}{6} - 1) - (\frac{10 \cdot 9}{2})</cmath> | ||
+ | <cmath>384-45</cmath> | ||
+ | <cmath>\boxed{339}</cmath> | ||
+ | |||
+ | ==See Also== | ||
+ | {{iTest box|year=2007|num-b=57|num-a=59}} | ||
− | + | [[Category:Intermediate Algebra Problems]] |
Latest revision as of 16:29, 22 July 2018
The following problem is from the Ultimate Question of the 2007 iTest, where solving this problem required the answer of a previous problem. When the problem is rewritten, the T-value is substituted.
Problem
For natural numbers , we define Compute the value of .
Solution
The function can be rewritten as
Let . With the substitution, each similar part becomes Performing polynomial division results in When or , then is close to zero, which means that would be the same for a given when or . Thus, .
That means , and that equals
See Also
2007 iTest (Problems, Answer Key) | ||
Preceded by: Problem 57 |
Followed by: Problem 59 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 |