Difference between revisions of "2019 AMC 8 Problems/Problem 6"

(Created page with "Problem 7 Shauna takes 5 tests, each worth a maximum of a 100 points. Her scores on the first three tests were 76, 94, and 87. In order to average an 81 on all five tests, wha...")
 
 
(51 intermediate revisions by 21 users not shown)
Line 1: Line 1:
Problem 7
+
==Problem==
Shauna takes 5 tests, each worth a maximum of a 100 points. Her scores on the first three tests
 
were 76, 94, and 87. In order to average an 81 on all five tests, what is the lowest score she could
 
earn on one of the two tests?
 
A(48)  B(52)    C(66)    D(70)    E(74)
 
  
SOLUTION
+
There are <math>81</math> grid points (uniformly spaced) in the square shown in the diagram below, including the points on the edges. Point <math>P</math> is in the center of the square. Given that point <math>Q</math> is randomly chosen among the other <math>80</math> points, what is the probability that the line <math>PQ</math> is a line of symmetry for the square?
So far, she has scored 76+94+87=257 points on her tests. She needs to have 81*5=405 points in total to achieve an average of 81 on her 5 tests. To find the lowest score, one of the remaining scores must be the highest it can be (100). She needs to score 405-275=148. For the minimum score , 148-100=48. So its A(48).~heeeeeeheeeeeee
+
 
 +
<asy>
 +
draw((0,0)--(0,8));
 +
draw((0,8)--(8,8));
 +
draw((8,8)--(8,0));
 +
draw((8,0)--(0,0));
 +
dot((0,0));
 +
dot((0,1));
 +
dot((0,2));
 +
dot((0,3));
 +
dot((0,4));
 +
dot((0,5));
 +
dot((0,6));
 +
dot((0,7));
 +
dot((0,8));
 +
 
 +
dot((1,0));
 +
dot((1,1));
 +
dot((1,2));
 +
dot((1,3));
 +
dot((1,4));
 +
dot((1,5));
 +
dot((1,6));
 +
dot((1,7));
 +
dot((1,8));
 +
 
 +
dot((2,0));
 +
dot((2,1));
 +
dot((2,2));
 +
dot((2,3));
 +
dot((2,4));
 +
dot((2,5));
 +
dot((2,6));
 +
dot((2,7));
 +
dot((2,8));
 +
 
 +
dot((3,0));
 +
dot((3,1));
 +
dot((3,2));
 +
dot((3,3));
 +
dot((3,4));
 +
dot((3,5));
 +
dot((3,6));
 +
dot((3,7));
 +
dot((3,8));
 +
 
 +
dot((4,0));
 +
dot((4,1));
 +
dot((4,2));
 +
dot((4,3));
 +
dot((4,4));
 +
dot((4,5));
 +
dot((4,6));
 +
dot((4,7));
 +
dot((4,8));
 +
 
 +
dot((5,0));
 +
dot((5,1));
 +
dot((5,2));
 +
dot((5,3));
 +
dot((5,4));
 +
dot((5,5));
 +
dot((5,6));
 +
dot((5,7));
 +
dot((5,8));
 +
 
 +
dot((6,0));
 +
dot((6,1));
 +
dot((6,2));
 +
dot((6,3));
 +
dot((6,4));
 +
dot((6,5));
 +
dot((6,6));
 +
dot((6,7));
 +
dot((6,8));
 +
 
 +
dot((7,0));
 +
dot((7,1));
 +
dot((7,2));
 +
dot((7,3));
 +
dot((7,4));
 +
dot((7,5));
 +
dot((7,6));
 +
dot((7,7));
 +
dot((7,8));
 +
 
 +
dot((8,0));
 +
dot((8,1));
 +
dot((8,2));
 +
dot((8,3));
 +
dot((8,4));
 +
dot((8,5));
 +
dot((8,6));
 +
dot((8,7));
 +
dot((8,8));
 +
label("P",(4,4),NE);
 +
</asy>
 +
 
 +
<math>\textbf{(A) }\frac{1}{5}\qquad\textbf{(B) }\frac{1}{4} \qquad\textbf{(C) }\frac{2}{5} \qquad\textbf{(D) }\frac{9}{20} \qquad\textbf{(E) }\frac{1}{2}</math>
 +
 
 +
==Solution 1==
 +
<asy>
 +
draw((0,0)--(0,8));
 +
draw((0,8)--(8,8));
 +
draw((8,8)--(8,0));
 +
draw((8,0)--(0,0));
 +
dot((0,0));
 +
dot((0,1));
 +
dot((0,2));
 +
dot((0,3));
 +
dot((0,4));
 +
dot((0,5));
 +
dot((0,6));
 +
dot((0,7));
 +
dot((0,8));
 +
 
 +
dot((1,0));
 +
dot((1,1));
 +
dot((1,2));
 +
dot((1,3));
 +
dot((1,4));
 +
dot((1,5));
 +
dot((1,6));
 +
dot((1,7));
 +
dot((1,8));
 +
 
 +
dot((2,0));
 +
dot((2,1));
 +
dot((2,2));
 +
dot((2,3));
 +
dot((2,4));
 +
dot((2,5));
 +
dot((2,6));
 +
dot((2,7));
 +
dot((2,8));
 +
 
 +
dot((3,0));
 +
dot((3,1));
 +
dot((3,2));
 +
dot((3,3));
 +
dot((3,4));
 +
dot((3,5));
 +
dot((3,6));
 +
dot((3,7));
 +
dot((3,8));
 +
 
 +
dot((4,0));
 +
dot((4,1));
 +
dot((4,2));
 +
dot((4,3));
 +
dot((4,4));
 +
dot((4,5));
 +
dot((4,6));
 +
dot((4,7));
 +
dot((4,8));
 +
 
 +
dot((5,0));
 +
dot((5,1));
 +
dot((5,2));
 +
dot((5,3));
 +
dot((5,4));
 +
dot((5,5));
 +
dot((5,6));
 +
dot((5,7));
 +
dot((5,8));
 +
 
 +
dot((6,0));
 +
dot((6,1));
 +
dot((6,2));
 +
dot((6,3));
 +
dot((6,4));
 +
dot((6,5));
 +
dot((6,6));
 +
dot((6,7));
 +
dot((6,8));
 +
 
 +
dot((7,0));
 +
dot((7,1));
 +
dot((7,2));
 +
dot((7,3));
 +
dot((7,4));
 +
dot((7,5));
 +
dot((7,6));
 +
dot((7,7));
 +
dot((7,8));
 +
 
 +
dot((8,0));
 +
dot((8,1));
 +
dot((8,2));
 +
dot((8,3));
 +
dot((8,4));
 +
dot((8,5));
 +
dot((8,6));
 +
dot((8,7));
 +
dot((8,8));
 +
label("P",(4,4),NE);
 +
draw((0,4)--(3,4));
 +
draw((0,8)--(3,5));
 +
draw((8,8)--(5,5));
 +
draw((4,8)--(4,5));
 +
draw((4,0)--(4,3));
 +
draw((0,0)--(3,3));
 +
draw((8,0)--(5,3));
 +
draw((5,4)--(8,4));
 +
</asy>
 +
Lines of symmetry go through point <math>P</math>, and there are <math>8</math> directions the lines could go, and there are <math>4</math> dots at each direction.<math>\frac{4\times8}{80}=\boxed{\textbf{(C)} \frac{2}{5}}</math>.
 +
 
 +
== Solution 2 ==
 +
 
 +
Divide the grid into 4 4x5 quadrants. Each row of 5 points has 1 point on a horizontal/vertical line of symmetry + 1 point on a diagonal line of symmetry: <math>\boxed{\textbf{(C)} \frac{2}{5}}</math>.
 +
 
 +
==Video Solution by Math-X (First fully understand the problem!!!)==
 +
https://youtu.be/IgpayYB48C4?si=AdzSEy4Ocrte4gEU&t=1650
 +
 
 +
~Math-X
 +
 
 +
==Video Solution (HOW TO THINK CREATIVELY!!!)==
 +
https://youtu.be/PizqK-oBLqk
 +
 
 +
~Education, the Study of Everything
 +
 
 +
== Video Solution ==
 +
The Learning Royal : https://youtu.be/8njQzoztDGc
 +
 
 +
== Video Solution 2 ==
 +
 
 +
Solution detailing how to solve the problem: https://www.youtube.com/watch?v=4L95z9DwlhI&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=7
 +
 
 +
==Video Solution 3==
 +
https://youtu.be/TAKmC11vitM
 +
 
 +
~savannahsolver
 +
 
 +
==Video Solution by The Power of Logic(1 to 25 Full Solution)==
 +
https://youtu.be/Xm4ZGND9WoY
 +
 
 +
~Hayabusa1
 +
 
 +
==See also==
 +
{{AMC8 box|year=2019|num-b=5|num-a=7}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 09:30, 9 November 2024

Problem

There are $81$ grid points (uniformly spaced) in the square shown in the diagram below, including the points on the edges. Point $P$ is in the center of the square. Given that point $Q$ is randomly chosen among the other $80$ points, what is the probability that the line $PQ$ is a line of symmetry for the square?

[asy] draw((0,0)--(0,8)); draw((0,8)--(8,8)); draw((8,8)--(8,0)); draw((8,0)--(0,0)); dot((0,0)); dot((0,1)); dot((0,2)); dot((0,3)); dot((0,4)); dot((0,5)); dot((0,6)); dot((0,7)); dot((0,8));  dot((1,0)); dot((1,1)); dot((1,2)); dot((1,3)); dot((1,4)); dot((1,5)); dot((1,6)); dot((1,7)); dot((1,8));  dot((2,0)); dot((2,1)); dot((2,2)); dot((2,3)); dot((2,4)); dot((2,5)); dot((2,6)); dot((2,7)); dot((2,8));  dot((3,0)); dot((3,1)); dot((3,2)); dot((3,3)); dot((3,4)); dot((3,5)); dot((3,6)); dot((3,7)); dot((3,8));  dot((4,0)); dot((4,1)); dot((4,2)); dot((4,3)); dot((4,4)); dot((4,5)); dot((4,6)); dot((4,7)); dot((4,8));  dot((5,0)); dot((5,1)); dot((5,2)); dot((5,3)); dot((5,4)); dot((5,5)); dot((5,6)); dot((5,7)); dot((5,8));  dot((6,0)); dot((6,1)); dot((6,2)); dot((6,3)); dot((6,4)); dot((6,5)); dot((6,6)); dot((6,7)); dot((6,8));  dot((7,0)); dot((7,1)); dot((7,2)); dot((7,3)); dot((7,4)); dot((7,5)); dot((7,6)); dot((7,7)); dot((7,8));  dot((8,0)); dot((8,1)); dot((8,2)); dot((8,3)); dot((8,4)); dot((8,5)); dot((8,6)); dot((8,7)); dot((8,8)); label("P",(4,4),NE); [/asy]

$\textbf{(A) }\frac{1}{5}\qquad\textbf{(B) }\frac{1}{4} \qquad\textbf{(C) }\frac{2}{5} \qquad\textbf{(D) }\frac{9}{20} \qquad\textbf{(E) }\frac{1}{2}$

Solution 1

[asy] draw((0,0)--(0,8)); draw((0,8)--(8,8)); draw((8,8)--(8,0)); draw((8,0)--(0,0)); dot((0,0)); dot((0,1)); dot((0,2)); dot((0,3)); dot((0,4)); dot((0,5)); dot((0,6)); dot((0,7)); dot((0,8));  dot((1,0)); dot((1,1)); dot((1,2)); dot((1,3)); dot((1,4)); dot((1,5)); dot((1,6)); dot((1,7)); dot((1,8));  dot((2,0)); dot((2,1)); dot((2,2)); dot((2,3)); dot((2,4)); dot((2,5)); dot((2,6)); dot((2,7)); dot((2,8));  dot((3,0)); dot((3,1)); dot((3,2)); dot((3,3)); dot((3,4)); dot((3,5)); dot((3,6)); dot((3,7)); dot((3,8));  dot((4,0)); dot((4,1)); dot((4,2)); dot((4,3)); dot((4,4)); dot((4,5)); dot((4,6)); dot((4,7)); dot((4,8));  dot((5,0)); dot((5,1)); dot((5,2)); dot((5,3)); dot((5,4)); dot((5,5)); dot((5,6)); dot((5,7)); dot((5,8));  dot((6,0)); dot((6,1)); dot((6,2)); dot((6,3)); dot((6,4)); dot((6,5)); dot((6,6)); dot((6,7)); dot((6,8));  dot((7,0)); dot((7,1)); dot((7,2)); dot((7,3)); dot((7,4)); dot((7,5)); dot((7,6)); dot((7,7)); dot((7,8));  dot((8,0)); dot((8,1)); dot((8,2)); dot((8,3)); dot((8,4)); dot((8,5)); dot((8,6)); dot((8,7)); dot((8,8)); label("P",(4,4),NE); draw((0,4)--(3,4)); draw((0,8)--(3,5)); draw((8,8)--(5,5)); draw((4,8)--(4,5)); draw((4,0)--(4,3)); draw((0,0)--(3,3)); draw((8,0)--(5,3)); draw((5,4)--(8,4)); [/asy] Lines of symmetry go through point $P$, and there are $8$ directions the lines could go, and there are $4$ dots at each direction.$\frac{4\times8}{80}=\boxed{\textbf{(C)} \frac{2}{5}}$.

Solution 2

Divide the grid into 4 4x5 quadrants. Each row of 5 points has 1 point on a horizontal/vertical line of symmetry + 1 point on a diagonal line of symmetry: $\boxed{\textbf{(C)} \frac{2}{5}}$.

Video Solution by Math-X (First fully understand the problem!!!)

https://youtu.be/IgpayYB48C4?si=AdzSEy4Ocrte4gEU&t=1650

~Math-X

Video Solution (HOW TO THINK CREATIVELY!!!)

https://youtu.be/PizqK-oBLqk

~Education, the Study of Everything

Video Solution

The Learning Royal : https://youtu.be/8njQzoztDGc

Video Solution 2

Solution detailing how to solve the problem: https://www.youtube.com/watch?v=4L95z9DwlhI&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=7

Video Solution 3

https://youtu.be/TAKmC11vitM

~savannahsolver

Video Solution by The Power of Logic(1 to 25 Full Solution)

https://youtu.be/Xm4ZGND9WoY

~Hayabusa1

See also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png