Difference between revisions of "2019 AMC 10B Problems/Problem 9"
(→Solution 4) |
m (consistent formatting of answer choices) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
The function <math>f</math> is defined by <cmath>f(x) = \lfloor|x|\rfloor - |\lfloor x \rfloor|</cmath>for all real numbers <math>x</math>, where <math>\lfloor r \rfloor</math> denotes the greatest integer less than or equal to the real number <math>r</math>. What is the range of <math>f</math>? | The function <math>f</math> is defined by <cmath>f(x) = \lfloor|x|\rfloor - |\lfloor x \rfloor|</cmath>for all real numbers <math>x</math>, where <math>\lfloor r \rfloor</math> denotes the greatest integer less than or equal to the real number <math>r</math>. What is the range of <math>f</math>? | ||
− | <math>\textbf{(A) } \{-1, 0\} \qquad\textbf{(B) } \text{The set of nonpositive integers} \qquad\textbf{(C) } \{-1, 0, 1\} \qquad\textbf{(D) } \{0\} | + | <math>\textbf{(A) } \{-1, 0\} \qquad\textbf{(B) } \text{The set of nonpositive integers} \qquad\textbf{(C) } \{-1, 0, 1\} \qquad\textbf{(D) } \{0\} \qquad \textbf{(E) } \text{The set of nonnegative integers} </math> |
== Solution 1 == | == Solution 1 == | ||
Line 61: | Line 61: | ||
− | '''Case 1 | + | '''Case 1 - x is positive:''' |
Let <math>x = n + f</math>, where <math>n</math> is a positive integer and <math>f</math> is a positive real number between 0 and 1. We have | Let <math>x = n + f</math>, where <math>n</math> is a positive integer and <math>f</math> is a positive real number between 0 and 1. We have | ||
Line 69: | Line 69: | ||
− | '''Case 2 | + | '''Case 2 - x is negative: ''' |
Let <math>x = -n - f</math>, where <math>n</math> is a positive integer and <math>f</math> is a positive real number between 0 and 1. We have | Let <math>x = -n - f</math>, where <math>n</math> is a positive integer and <math>f</math> is a positive real number between 0 and 1. We have | ||
Line 80: | Line 80: | ||
Hence, the possible values of <math>f(x)</math> are <math>0</math> and <math>-1</math>, so the answer is <math>\boxed{\textbf{(A) } \{-1, 0\}}</math>. ~azc1027 | Hence, the possible values of <math>f(x)</math> are <math>0</math> and <math>-1</math>, so the answer is <math>\boxed{\textbf{(A) } \{-1, 0\}}</math>. ~azc1027 | ||
− | ==Video Solution | + | ==Video Solution== |
https://youtu.be/LffjyNNqf14 | https://youtu.be/LffjyNNqf14 | ||
~Education, the Study of Everything | ~Education, the Study of Everything | ||
− | |||
== Video Solution == | == Video Solution == |
Latest revision as of 15:07, 4 July 2023
Contents
Problem
The function is defined by for all real numbers , where denotes the greatest integer less than or equal to the real number . What is the range of ?
Solution 1
There are four cases we need to consider here.
Case 1: is a positive integer. Without loss of generality, assume . Then .
Case 2: is a positive fraction. Without loss of generality, assume . Then .
Case 3: is a negative integer. Without loss of generality, assume . Then .
Case 4: is a negative fraction. Without loss of generality, assume . Then .
Thus the range of the function is .
~IronicNinja
Solution 2
It is easily verified that when is an integer, is zero. We therefore need only to consider the case when is not an integer.
When is positive, , so
When is negative, let be composed of integer part and fractional part (both ):
Thus, the range of x is .
Note: One could solve the case of as a negative non-integer in this way:
Solution 3 (Formal)
Let {} denote the fractional part of ; for example, {}, and {}. Then for , {} and for , {}.
Now we can rewrite , breaking the expression up based on whether or .
For , the above expression is equal to {} {}{}
.
For , the expression is equal to {} {}
{}.
Therefore the only two possible values for , and thus the range of the function, is .
~KingRavi
Solution 4
We have 2 cases: either is positive or is negative.
Case 1 - x is positive:
Let , where is a positive integer and is a positive real number between 0 and 1. We have and , so the possible value of if is positive is .
Case 2 - x is negative:
Let , where is a positive integer and is a positive real number between 0 and 1. We have and
and , so the possible values of if is negative are and
Hence, the possible values of are and , so the answer is . ~azc1027
Video Solution
~Education, the Study of Everything
Video Solution
~savannahsolver
See Also
2019 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.