Difference between revisions of "1961 AHSME Problems/Problem 7"

(Created page with 'When simplified, the third term in the expansion of <math>(\frac{a}{\sqrt{x}}- \frac{\sqrt{x}}{a^2})^6</math> is:')
 
m (See Also)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
When simplified, the third term in the expansion of <math>(\frac{a}{\sqrt{x}}- \frac{\sqrt{x}}{a^2})^6</math> is:
+
== Problem ==
 +
 
 +
When simplified, the third term in the expansion of <math>(\frac{a}{\sqrt{x}}-\frac{\sqrt{x}}{a^2})^6</math> is:
 +
 
 +
<math>\textbf{(A)}\ \frac{15}{x}\qquad
 +
\textbf{(B)}\ -\frac{15}{x}\qquad
 +
\textbf{(C)}\ -\frac{6x^2}{a^9} \qquad
 +
\textbf{(D)}\ \frac{20}{a^3}\qquad
 +
\textbf{(E)}\ -\frac{20}{a^3}</math>
 +
 
 +
==Solution==
 +
By the [[Binomial Theorem]], the third term in the expansion is
 +
<cmath>\binom{6}{2}(\frac{a}{\sqrt{x}})^{4}(\frac{-\sqrt{x}}{a^2})^2</cmath>
 +
<cmath>15 \cdot \frac{a^4}{x^2} \cdot \frac{x}{a^4}</cmath>
 +
<cmath>\frac{15}{x}</cmath>
 +
The answer is <math>\boxed{\textbf{(A)}}</math>.
 +
 
 +
==See Also==
 +
{{AHSME 40p box|year=1961|num-b=6|num-a=8}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 +
 
 +
{{MAA Notice}}

Latest revision as of 19:09, 17 May 2018

Problem

When simplified, the third term in the expansion of $(\frac{a}{\sqrt{x}}-\frac{\sqrt{x}}{a^2})^6$ is:

$\textbf{(A)}\ \frac{15}{x}\qquad \textbf{(B)}\ -\frac{15}{x}\qquad \textbf{(C)}\ -\frac{6x^2}{a^9} \qquad \textbf{(D)}\ \frac{20}{a^3}\qquad \textbf{(E)}\ -\frac{20}{a^3}$

Solution

By the Binomial Theorem, the third term in the expansion is \[\binom{6}{2}(\frac{a}{\sqrt{x}})^{4}(\frac{-\sqrt{x}}{a^2})^2\] \[15 \cdot \frac{a^4}{x^2} \cdot \frac{x}{a^4}\] \[\frac{15}{x}\] The answer is $\boxed{\textbf{(A)}}$.

See Also

1961 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png