Difference between revisions of "2005 AIME I Problems"

(Problem 14)
 
(7 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 +
{{AIME Problems|year=2005|n=I}}
 +
 
== Problem 1 ==
 
== Problem 1 ==
Six circles form a ring with with each circle externally tangent to two circles adjacent to it. All circles are internally tangent to a circle <math> C </math> with radius 30. Let <math> K </math> be the area of the region inside circle <math> C </math> and outside of the six circles in the ring. Find <math> \lfloor K \rfloor. </math>
+
Six congruent circles form a ring with each circle externally tangent to two circles adjacent to it. All circles are internally tangent to a circle <math> C </math> with radius 30. Let <math> K </math> be the area of the region inside circle <math> C </math> and outside of the six circles in the ring. Find <math> \lfloor K \rfloor. </math>
  
 
[[2005 AIME I Problems/Problem 1|Solution]]
 
[[2005 AIME I Problems/Problem 1|Solution]]
Line 10: Line 12:
  
 
== Problem 3 ==
 
== Problem 3 ==
How many positive integers have exactly three proper divisors, each of which is less than 50?
+
How many positive integers have exactly three proper divisors (positive integral divisors excluding itself), each of which is less than 50?
  
 
[[2005 AIME I Problems/Problem 3|Solution]]
 
[[2005 AIME I Problems/Problem 3|Solution]]
Line 20: Line 22:
  
 
== Problem 5 ==
 
== Problem 5 ==
Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has an engraving of one face on one side, but not on the other. He wants to stack the eight coins on a table into a single stack so that no two adjacent coins are face to face. Find the number of possible distunguishable arrangements of the 8 coins.
+
Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has an engraving of one face on one side, but not on the other. He wants to stack the eight coins on a table into a single stack so that no two adjacent coins are face to face. Find the number of possible distinguishable arrangements of the 8 coins.
  
 
[[2005 AIME I Problems/Problem 5|Solution]]
 
[[2005 AIME I Problems/Problem 5|Solution]]
Line 40: Line 42:
  
 
== Problem 9 ==
 
== Problem 9 ==
Twenty seven unit cubes are painted orange on a set of four faces so that two non-painted faces share an edge. The 27 cubes are randomly arranged to form a <math> 3\times 3 \times 3 </math> cube. Given the probability of the entire surface area of the larger cube is orange is <math> \frac{p^a}{q^br^c}, </math> where <math> p,q, </math> and <math> r </math> are distinct primes and <math> a,b, </math> and <math> c </math> are positive integers, find <math> a+b+c+p+q+r. </math>
+
Twenty-seven unit cubes are painted orange on a set of four faces so that the two unpainted faces share an edge. The 27 cubes are then randomly arranged to form a <math> 3\times 3 \times 3 </math> cube. Given that the probability that the entire surface of the larger cube is orange is <math> \frac{p^a}{q^br^c}, </math> where <math> p,q, </math> and <math> r </math> are distinct primes and <math> a,b, </math> and <math> c </math> are positive integers, find <math> a+b+c+p+q+r. </math>
  
 
[[2005 AIME I Problems/Problem 9|Solution]]
 
[[2005 AIME I Problems/Problem 9|Solution]]
Line 80: Line 82:
  
 
== See Also ==
 
== See Also ==
 +
 +
{{AIME box|year = 2005|n=I|before=[[2004 AIME II Problems]]|after=[[2005 AIME II Problems]]}}
 +
 
* [[American Invitational Mathematics Examination]]
 
* [[American Invitational Mathematics Examination]]
 
* [[AIME Problems and Solutions]]
 
* [[AIME Problems and Solutions]]
 
* [http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=50 2005 AIME I Math Jam Transcript]
 
* [http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=50 2005 AIME I Math Jam Transcript]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
{{MAA Notice}}

Latest revision as of 04:06, 20 February 2019

2005 AIME I (Answer Key)
Printable version | AoPS Contest CollectionsPDF

Instructions

  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem 1

Six congruent circles form a ring with each circle externally tangent to two circles adjacent to it. All circles are internally tangent to a circle $C$ with radius 30. Let $K$ be the area of the region inside circle $C$ and outside of the six circles in the ring. Find $\lfloor K \rfloor.$

Solution

Problem 2

For each positive integer $k,$ let $S_k$ denote the increasing arithmetic sequence of integers whose first term is 1 and whose common difference is $k.$ For example, $S_3$ is the sequence $1,4,7,10,\ldots.$ For how many values of $k$ does $S_k$ contain the term 2005?

Solution

Problem 3

How many positive integers have exactly three proper divisors (positive integral divisors excluding itself), each of which is less than 50?

Solution

Problem 4

The director of a marching band wishes to place the members into a formation that includes all of them and has no unfilled positions. If they are arranged in a square formation, there are 5 members left over. The director realizes that if he arranges the group in a formation with 7 more rows than columns, there are no members left over. Find the maximum number of members this band can have.

Solution

Problem 5

Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has an engraving of one face on one side, but not on the other. He wants to stack the eight coins on a table into a single stack so that no two adjacent coins are face to face. Find the number of possible distinguishable arrangements of the 8 coins.

Solution

Problem 6

Let $P$ be the product of the nonreal roots of $x^4-4x^3+6x^2-4x=2005.$ Find $\lfloor P\rfloor.$

Solution

Problem 7

In quadrilateral $ABCD, BC=8, CD=12, AD=10,$ and $m\angle A= m\angle B = 60^\circ.$ Given that $AB = p + \sqrt{q},$ where $p$ and $q$ are positive integers, find $p+q.$

Solution

Problem 8

The equation $2^{333x-2} + 2^{111x+2} = 2^{222x+1} + 1$ has three real roots. Given that their sum is $\frac mn$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$

Solution

Problem 9

Twenty-seven unit cubes are painted orange on a set of four faces so that the two unpainted faces share an edge. The 27 cubes are then randomly arranged to form a $3\times 3 \times 3$ cube. Given that the probability that the entire surface of the larger cube is orange is $\frac{p^a}{q^br^c},$ where $p,q,$ and $r$ are distinct primes and $a,b,$ and $c$ are positive integers, find $a+b+c+p+q+r.$

Solution

Problem 10

Triangle $ABC$ lies in the Cartesian Plane and has an area of 70. The coordinates of $B$ and $C$ are $(12,19)$ and $(23,20),$ respectively, and the coordinates of $A$ are $(p,q).$ The line containing the median to side $BC$ has slope $-5.$ Find the largest possible value of $p+q.$

Solution

Problem 11

A semicircle with diameter $d$ is contained in a square whose sides have length 8. Given the maximum value of $d$ is $m - \sqrt{n},$ find $m+n.$

Solution

Problem 12

For positive integers $n,$ let $\tau (n)$ denote the number of positive integer divisors of $n,$ including 1 and $n.$ For example, $\tau (1)=1$ and $\tau(6) =4.$ Define $S(n)$ by $S(n)=\tau(1)+ \tau(2) + \cdots + \tau(n).$ Let $a$ denote the number of positive integers $n \leq 2005$ with $S(n)$ odd, and let $b$ denote the number of positive integers $n \leq 2005$ with $S(n)$ even. Find $|a-b|.$

Solution

Problem 13

A particle moves in the Cartesian Plane according to the following rules:

  1. From any lattice point $(a,b),$ the particle may only move to $(a+1,b), (a,b+1),$ or $(a+1,b+1).$
  2. There are no right angle turns in the particle's path.

How many different paths can the particle take from $(0,0)$ to $(5,5)$?

Solution

Problem 14

Consider the points $A(0,12), B(10,9), C(8,0),$ and $D(-4,7).$ There is a unique square $S$ such that each of the four points is on a different side of $S.$ Let $K$ be the area of $S.$ Find the remainder when $10K$ is divided by 1000.

Solution

Problem 15

Triangle $ABC$ has $BC=20.$ The incircle of the triangle evenly trisects the median $AD.$ If the area of the triangle is $m \sqrt{n}$ where $m$ and $n$ are integers and $n$ is not divisible by the square of a prime, find $m+n.$

Solution

See Also

2005 AIME I (ProblemsAnswer KeyResources)
Preceded by
2004 AIME II Problems
Followed by
2005 AIME II Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png