Difference between revisions of "2007 iTest Problems/Problem 14"

(Created page with "== Problem == Let <math>\phi(n)</math> be the number of positive integers <math>k< n</math> which are relatively prime to <math>n</math>. For how many distinct values of <math>n...")
 
m (Solution)
 
(2 intermediate revisions by one other user not shown)
Line 19: Line 19:
  
 
== Solution ==
 
== Solution ==
 +
If <math>n=p_1^{k_1}\cdots p_s^{k_s}</math> then <math>\phi(n)=p_1^{k_1-1}\cdots p_s^{k_s-1}\cdot (p_1-1)\cdots
 +
(p_s-1)</math>. Hence every prime factor of <math>n</math> is contained in <math>\{2,3,5,7,13\}</math>. Let <math>p</math> be the
 +
largest prime dividing <math>n</math>. If <math>p=13</math> then <math>n=13,26</math>. If <math>p=7</math> then <math>n=7k</math> with <math>7\not |k,
 +
\phi(k)=2</math> giving solutions <math>n=21,28,42</math>. If <math>p=5</math> then <math>n=5k</math> with <math>5\not |k,\phi(k)=3</math>,
 +
no solutions since <math>\phi(k)</math> is always even unless it is 1. Otherwise <math>n=2^a\cdot 3^b</math> where
 +
<math>a,b\ge 1</math> and <math>\phi(n)=2^a\cdot 3^{b-1}</math>. Hence <math>a=2,b=2,n=36</math>. Therefore all solutions
 +
are given by <math>n=13,26,21,28,42,36</math> and the answer is G.
 +
 +
~Solution by [https://artofproblemsolving.com/community/user/209000| Alexheinis] but not posted on the wiki by Alexhienis
 +
 +
==See Also==
 +
{{iTest box|year=2007|num-b=13|num-a=15}}
 +
 +
[[Category:Introductory Number Theory Problems]]

Latest revision as of 20:23, 4 February 2023

Problem

Let $\phi(n)$ be the number of positive integers $k< n$ which are relatively prime to $n$. For how many distinct values of $n$ is $\phi(n)=12$?

$\text{(A) } 0 \quad \text{(B) } 1 \quad \text{(C) } 2 \quad \text{(D) } 3 \quad \text{(E) } 4 \quad \text{(F) } 5 \quad \text{(G) } 6 \quad \text{(H) } 7 \quad \text{(I) } 8 \quad \text{(J) } 9 \quad \text{(K) } 10 \quad \text{(L) } 11 \quad \text{(M) } 12\quad \text{(N) } 13\quad$

Solution

If $n=p_1^{k_1}\cdots p_s^{k_s}$ then $\phi(n)=p_1^{k_1-1}\cdots p_s^{k_s-1}\cdot (p_1-1)\cdots (p_s-1)$. Hence every prime factor of $n$ is contained in $\{2,3,5,7,13\}$. Let $p$ be the largest prime dividing $n$. If $p=13$ then $n=13,26$. If $p=7$ then $n=7k$ with $7\not |k, \phi(k)=2$ giving solutions $n=21,28,42$. If $p=5$ then $n=5k$ with $5\not |k,\phi(k)=3$, no solutions since $\phi(k)$ is always even unless it is 1. Otherwise $n=2^a\cdot 3^b$ where $a,b\ge 1$ and $\phi(n)=2^a\cdot 3^{b-1}$. Hence $a=2,b=2,n=36$. Therefore all solutions are given by $n=13,26,21,28,42,36$ and the answer is G.

~Solution by Alexheinis but not posted on the wiki by Alexhienis

See Also

2007 iTest (Problems, Answer Key)
Preceded by:
Problem 13
Followed by:
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4