Difference between revisions of "2007 iTest Problems/Problem 17"
Rockmanex3 (talk | contribs) m |
m (→Solution 2) |
||
(One intermediate revision by the same user not shown) | |||
Line 42: | Line 42: | ||
<math>\tan{x}=\boxed{\textbf{(F) } \frac{5}{7}}</math> | <math>\tan{x}=\boxed{\textbf{(F) } \frac{5}{7}}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | We will use complex numbers: <math>y</math> represents the complex number <math>6+i</math>, and <math>x+y=\frac{\pi}{4}</math> represents the fact <math>x\cdot y=1+i</math>, so dividing <math>1+i</math> by <math>6+i</math>, we get <math>\frac{7+5i}{56}</math>, which means <math>\tan{x}=\boxed{\textbf{(F) } \frac{5}{7}}</math> | ||
==See Also== | ==See Also== |
Latest revision as of 20:30, 4 February 2023
Contents
Problem
If and are acute angles such that and , find the value of .
Solution
From the second equation, we get that . Plugging this into the first equation, we get:
Taking the tangent of both sides,
From the tangent addition formula, we then get:
.
Rearranging and solving, we get
Solution 2
We will use complex numbers: represents the complex number , and represents the fact , so dividing by , we get , which means
See Also
2007 iTest (Problems, Answer Key) | ||
Preceded by: Problem 16 |
Followed by: Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 |