Difference between revisions of "2018 AMC 10B Problems/Problem 25"
(→Solution 1) |
(→Solution 1) |
||
Line 40: | Line 40: | ||
Now notice that when <math>x=\pm 100</math> then graph has a hole at <math>(\pm 100,10,000)</math> which the equation <math>y=x^2</math> passes through and then continues upwards. Thus our set of possible solutions is bounded by <math>(-100,100)</math>. We can see that <math>y=x^2</math> intersects each of the lines once and there are <math>99-(-99)+1=199</math> lines for an answer of <math>\boxed{\text{(C)}~199}</math>. | Now notice that when <math>x=\pm 100</math> then graph has a hole at <math>(\pm 100,10,000)</math> which the equation <math>y=x^2</math> passes through and then continues upwards. Thus our set of possible solutions is bounded by <math>(-100,100)</math>. We can see that <math>y=x^2</math> intersects each of the lines once and there are <math>99-(-99)+1=199</math> lines for an answer of <math>\boxed{\text{(C)}~199}</math>. | ||
− | Note: from the graph we can | + | Note: from the graph we can clearly see there are 4 solution on the negative side and only 2 on the positive side. So the solution really should be from -100 to 98, which still counts to 199. A couple of the alternative solutions also seem to have the same flaw. |
==Solution 2== | ==Solution 2== |
Revision as of 10:05, 22 January 2019
Problem
Let denote the greatest integer less than or equal to . How many real numbers satisfy the equation ?
Solution 1
This rewrites itself to .
Graphing and we see that the former is a set of line segments with slope from to with a hole at , then to with a hole at etc.
Here is a graph of and for visualization.
Now notice that when then graph has a hole at which the equation passes through and then continues upwards. Thus our set of possible solutions is bounded by . We can see that intersects each of the lines once and there are lines for an answer of .
Note: from the graph we can clearly see there are 4 solution on the negative side and only 2 on the positive side. So the solution really should be from -100 to 98, which still counts to 199. A couple of the alternative solutions also seem to have the same flaw.
Solution 2
Same as the first solution, .
We can write as . Expanding everything, we get a quadratic in in terms of :
We use the quadratic formula to solve for {x}:
Since , we get an inequality which we can then solve. After simplifying a lot, we get that .
Solving over the integers, , and since is an integer, there are solutions. Each value of should correspond to one value of , so we are done.
Solution 3
Let where is the integer part of and is the fractional part of . We can then rewrite the problem below:
From here, we get
Solving for
Because , we know that cannot be less than or equal to nor greater than or equal to . Therefore:
There are 199 elements in this range, so the answer is .
Solution 4
Notice the given equation is equivilent to
Now we now that so plugging in for we can find the upper and lower bounds for the values.
And just like Solution 2, we see that , and since is an integer, there are solutions. Each value of should correspond to one value of , so we are done.
Solution 5
First, we can let . We know that by definition. We can rearrange the equation to obtain
.
By taking square root on both sides, we obtain (because ). We know since is the fractional part of , it must be that . Thus, may take any value in the interval . Hence, we know that there are potential values for in that range and we are done.
~awesome1st
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.