Difference between revisions of "2019 AMC 8 Problems/Problem 13"

(Fixed before and after problems links)
(Solution 1)
Line 5: Line 5:
  
 
==Solution 1==
 
==Solution 1==
 
+
All the two digit palindromes are multiples of 11. The least 3 digit integer that is the sum of 2 two digit integers is a multiple of 11! The least 3 digit multiple of 11 is 110.
  
 
==See Also==
 
==See Also==

Revision as of 11:38, 20 November 2019

Problem 13

A $\textit{palindrome}$ is a number that has the same value when read from left to right or from right to left. (For example 12321 is a palindrome.) Let $N$ be the least three-digit integer which is not a palindrome but which is the sum of three distinct two-digit palindromes. What is the sum of the digits of $N$?

$\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad\textbf{(E) }6$

Solution 1

All the two digit palindromes are multiples of 11. The least 3 digit integer that is the sum of 2 two digit integers is a multiple of 11! The least 3 digit multiple of 11 is 110.

See Also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png