Difference between revisions of "2020 AMC 10A Problems/Problem 20"
(→Solution 1 (Just Drop An Altitude)) |
|||
Line 1: | Line 1: | ||
+ | {{duplicate|[[2020 AMC 12A Problems|2020 AMC 12A #18]] and [[2020 AMC 10A Problems|2020 AMC 10A #20]]}} | ||
+ | |||
== Problem == | == Problem == | ||
Quadrilateral <math>ABCD</math> satisfies <math>\angle ABC = \angle ACD = 90^{\circ}, AC=20,</math> and <math>CD=30.</math> Diagonals <math>\overline{AC}</math> and <math>\overline{BD}</math> intersect at point <math>E,</math> and <math>AE=5.</math> What is the area of quadrilateral <math>ABCD?</math> | Quadrilateral <math>ABCD</math> satisfies <math>\angle ABC = \angle ACD = 90^{\circ}, AC=20,</math> and <math>CD=30.</math> Diagonals <math>\overline{AC}</math> and <math>\overline{BD}</math> intersect at point <math>E,</math> and <math>AE=5.</math> What is the area of quadrilateral <math>ABCD?</math> |
Revision as of 06:41, 2 February 2020
- The following problem is from both the 2020 AMC 12A #18 and 2020 AMC 10A #20, so both problems redirect to this page.
Contents
Problem
Quadrilateral satisfies and Diagonals and intersect at point and What is the area of quadrilateral
Solution 1 (Just Drop An Altitude)
It's crucial to draw a good diagram for this one. Since and , we get . Now we need to find to get the area of the whole quadrilateral. Drop an altitude from to and call the point of intersection . Let . Since , then . By dropping this altitude, we can also see two similar triangles, and . Since is , and , we get that . Now, if we redraw another diagram just of , we get that . Now expanding, simplifying, and dividing by the GCF, we get . This factors to . Since lengths cannot be negative, . Since , . So
(I'm very sorry if you're a visual learner)
~Ultraman, diagram by ciceronii
Solution 2 (Pro Guessing Strats)
We know that the big triangle has area 300. Use the answer choices which would mean that the area of the little triangle is a multiple of 10. Thus the product of the legs is a multiple of 20. Guess that the legs are equal to and , and because the hypotenuse is 20 we get . Testing small numbers, we get that when and , is indeed a square. The area of the triangle is thus 60, so the answer is .
~tigershark22 ~(edited by HappyHuman)
Solution 3 (coordinates)
Let the points be , , , ,and , respectively. Since lies on line , we know that . Furthermore, since , lies on the circle with diameter , so . Solving for and with these equations, we get the solutions and . We immediately discard the solution as should be negative. Thus, we conclude that .
Solution 4 (Trigonometry)
Using the law of cosines, express and in terms of . The sum of these two equations is by the Pythagorean Theorem. Solving for , and using the fact that , we find . Since and , , which is five times ,
(This solution is incomplete, can someone complete it please-Lingjun) Latex edited by kc5170
Video Solution
On The Spot STEM https://www.youtube.com/watch?v=hIdNde2Vln4
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.