Difference between revisions of "2019 AMC 8 Problems/Problem 15"

(Video Solution)
(Solution 1)
Line 2: Line 2:
 
On a beach <math>50</math> people are wearing sunglasses and <math>35</math> people are wearing caps. Some people are wearing both sunglasses and caps. If one of the people wearing a cap is selected at random, the probability that this person is  is also wearing sunglasses is <math>\frac{2}{5}</math>. If instead, someone wearing sunglasses is selected at random, what is the probability that this person is also wearing a cap?
 
On a beach <math>50</math> people are wearing sunglasses and <math>35</math> people are wearing caps. Some people are wearing both sunglasses and caps. If one of the people wearing a cap is selected at random, the probability that this person is  is also wearing sunglasses is <math>\frac{2}{5}</math>. If instead, someone wearing sunglasses is selected at random, what is the probability that this person is also wearing a cap?
 
<math>\textbf{(A) }\frac{14}{85}\qquad\textbf{(B) }\frac{7}{25}\qquad\textbf{(C) }\frac{2}{5}\qquad\textbf{(D) }\frac{4}{7}\qquad\textbf{(E) }\frac{7}{10}</math>
 
<math>\textbf{(A) }\frac{14}{85}\qquad\textbf{(B) }\frac{7}{25}\qquad\textbf{(C) }\frac{2}{5}\qquad\textbf{(D) }\frac{4}{7}\qquad\textbf{(E) }\frac{7}{10}</math>
 +
 +
==Video Solution==
 +
https://youtu.be/6xNkyDgIhEE?t=252
  
 
==Solution 1==
 
==Solution 1==
Line 7: Line 10:
 
<math>\frac{2}{5}\cdot35=14</math>. So then 14 people out of the 50 people wearing sunglasses also have caps.  
 
<math>\frac{2}{5}\cdot35=14</math>. So then 14 people out of the 50 people wearing sunglasses also have caps.  
 
<math>\frac{14}{50}=\boxed{\textbf{(B)}\frac{7}{25}}</math>
 
<math>\frac{14}{50}=\boxed{\textbf{(B)}\frac{7}{25}}</math>
 
  
 
==Video Solution==
 
==Video Solution==

Revision as of 21:23, 12 August 2020

Problem 15

On a beach $50$ people are wearing sunglasses and $35$ people are wearing caps. Some people are wearing both sunglasses and caps. If one of the people wearing a cap is selected at random, the probability that this person is is also wearing sunglasses is $\frac{2}{5}$. If instead, someone wearing sunglasses is selected at random, what is the probability that this person is also wearing a cap? $\textbf{(A) }\frac{14}{85}\qquad\textbf{(B) }\frac{7}{25}\qquad\textbf{(C) }\frac{2}{5}\qquad\textbf{(D) }\frac{4}{7}\qquad\textbf{(E) }\frac{7}{10}$

Video Solution

https://youtu.be/6xNkyDgIhEE?t=252

Solution 1

The number of people wearing caps and sunglasses is $\frac{2}{5}\cdot35=14$. So then 14 people out of the 50 people wearing sunglasses also have caps. $\frac{14}{50}=\boxed{\textbf{(B)}\frac{7}{25}}$

Video Solution

https://www.youtube.com/watch?v=gKlYlAiBzrs ~ MathEx

Another video - https://www.youtube.com/watch?v=afMsUqER13c

See Also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png