Difference between revisions of "2019 AMC 8 Problems/Problem 17"
m (→Solution 3) |
|||
Line 1: | Line 1: | ||
==Problem 17== | ==Problem 17== | ||
What is the value of the product | What is the value of the product | ||
+ | |||
<cmath>\left(\frac{1\cdot3}{2\cdot2}\right)\left(\frac{2\cdot4}{3\cdot3}\right)\left(\frac{3\cdot5}{4\cdot4}\right)\cdots\left(\frac{97\cdot99}{98\cdot98}\right)\left(\frac{98\cdot100}{99\cdot99}\right)?</cmath> | <cmath>\left(\frac{1\cdot3}{2\cdot2}\right)\left(\frac{2\cdot4}{3\cdot3}\right)\left(\frac{3\cdot5}{4\cdot4}\right)\cdots\left(\frac{97\cdot99}{98\cdot98}\right)\left(\frac{98\cdot100}{99\cdot99}\right)?</cmath> | ||
Revision as of 00:59, 16 February 2021
Contents
Problem 17
What is the value of the product
Solution 1(Telescoping)
We rewrite:
The middle terms cancel, leaving us with
Solution 2
If you calculate the first few values of the equation, all of the values tend to , but are not equal to it. The answer closest to but not equal to it is .
Solution 3
Rewriting the numerator and the denominator, we get . We can simplify by canceling 99! on both sides, leaving us with: We rewrite as and cancel , which gets .
Video Solution
Associated video - https://www.youtube.com/watch?v=yPQmvyVyvaM
https://www.youtube.com/watch?v=ffHl1dAjs7g&list=PLLCzevlMcsWNBsdpItBT4r7Pa8cZb6Viu&index=1 ~ MathEx
See Also
2019 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.