Difference between revisions of "2007 AMC 12A Problems/Problem 10"
(→Solution 2) |
|||
Line 12: | Line 12: | ||
==Solution 2== | ==Solution 2== | ||
− | The hypotenuse is a diameter of the circumcircle, so it has length 2 \cdot 3 = 6. | + | The hypotenuse is a diameter of the circumcircle, so it has <math>length 2 \cdot 3 = 6</math>. |
− | |||
==See also== | ==See also== |
Revision as of 12:48, 3 June 2021
- The following problem is from both the 2007 AMC 12A #10 and 2007 AMC 10A #14, so both problems redirect to this page.
Contents
Problem
A triangle with side lengths in the ratio is inscribed in a circle with radius 3. What is the area of the triangle?
Solution
Since 3-4-5 is a Pythagorean triple, the triangle is a right triangle. Since the hypotenuse is a diameter of the circumcircle, the hypotenuse is . Then the other legs are and . The area is
Solution 2
The hypotenuse is a diameter of the circumcircle, so it has .
See also
2007 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 9 |
Followed by Problem 11 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2007 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.