Difference between revisions of "2019 AMC 8 Problems/Problem 20"

(Solution 1)
(Solution 2)
Line 12: Line 12:
  
 
==Solution 2==
 
==Solution 2==
We can expand <math>(x^2-5)^2</math> to get <math>x^4-10x^2+25</math>, so now our equation is <math>x^4-10x^2+25=16</math>. Subtracting <math>16</math> from both sides gives us <math>x^4-10x^2+9=0</math>. Now, we can factor the left hand side to get <math>(x^2-9)(x^2-1)=0</math>. If <math>x^2-9</math> and/or <math>x^2-1</math> equals <math>0</math>, then the whole left side will equal <math>0</math>. Since the solutions can be both positive and negative, we have <math>4</math> solutions: <math>-3,3,-1,1</math> (we can find these solutions by setting <math>x^2-9</math> and <math>x^2-1</math> equal to <math>0</math> and solving for <math>x</math>). So the answer is <math>\boxed{\textbf{(D)} 4}</math>.  
+
We can expand <math>(x^2-5)^2</math> to get <math>x^4-10x^2+25</math>, so now our equation is <math>x^4-10x^2+25=16</math>. Subtracting <math>16</math> from both sides gives us <math>x^4-10x^2+9=0</math>. Now, we can factor the left hand side to get <math>(x^2-9)(x^2-1)=0</math>. If <math>x^2-9</math> and/or <math>x^2-1</math> equals <math>0</math>, then the whole left side will equal <math>0</math>. Since the solutions can be both positive and negative, we have <math>4</math> solutions: <math>-3,3,-1,1</math> (we can find these solutions by setting <math>x^2-9</math> and <math>x^2-1</math> equal to <math>0</math> and solving for <math>x</math>). So the answer is <math>\boxed{\textbf{(D) }4}</math>.  
  
 
~UnstoppableGoddess
 
~UnstoppableGoddess

Revision as of 08:48, 10 June 2022

Problem 20

How many different real numbers $x$ satisfy the equation \[(x^{2}-5)^{2}=16?\]

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }8$

Solution 1

We have that $(x^2-5)^2 = 16$ if and only if $x^2-5 = \pm 4$. If $x^2-5 = 4$, then $x^2 = 9 \implies x = \pm 3$, giving 2 solutions. If $x^2-5 = -4$, then $x^2 = 1 \implies x = \pm 1$, giving 2 more solutions. All four of these solutions work, so the answer is $\boxed{\textbf{(D) }4}$. Further, the equation is a quartic in $x$, so by the Fundamental Theorem of Algebra, there can be at most four real solutions.


Note: $x^2$ can be two possible things and still be the same, and in $(x^2+4)^2$, $x^2+4$ can also be negative or positive, so $2 \cdot 2 = 4$. This is a very fast solution.

Solution 2

We can expand $(x^2-5)^2$ to get $x^4-10x^2+25$, so now our equation is $x^4-10x^2+25=16$. Subtracting $16$ from both sides gives us $x^4-10x^2+9=0$. Now, we can factor the left hand side to get $(x^2-9)(x^2-1)=0$. If $x^2-9$ and/or $x^2-1$ equals $0$, then the whole left side will equal $0$. Since the solutions can be both positive and negative, we have $4$ solutions: $-3,3,-1,1$ (we can find these solutions by setting $x^2-9$ and $x^2-1$ equal to $0$ and solving for $x$). So the answer is $\boxed{\textbf{(D) }4}$.

~UnstoppableGoddess

Solution 3

Associated Video - https://www.youtube.com/watch?v=Q5yfodutpsw

https://youtu.be/0AY1klX3gBo

Solution 4

https://youtu.be/5BXh0JY4klM (Uses a difference of squares & factoring method, different from above solutions)

Solution 5 (Fast)

https://www.youtube.com/watch?v=44vrsk_CbF8&list=PLLCzevlMcsWNBsdpItBT4r7Pa8cZb6Viu&index=2 ~ MathEx

Video Solution

https://youtu.be/V3HxkJhSn08

-Happytwin

Video Solution

Solution detailing how to solve the problem: https://www.youtube.com/watch?v=eXJnG96Xqp4&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=21

Video Solution

https://youtu.be/b2CTH7dEbEg

~savannahsolver

See Also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png