Difference between revisions of "2019 AMC 8 Problems/Problem 17"
m (→Video Solution) |
m |
||
Line 6: | Line 6: | ||
<math>\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{50}{99}\qquad\textbf{(C) }\frac{9800}{9801}\qquad\textbf{(D) }\frac{100}{99}\qquad\textbf{(E) }50</math> | <math>\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{50}{99}\qquad\textbf{(C) }\frac{9800}{9801}\qquad\textbf{(D) }\frac{100}{99}\qquad\textbf{(E) }50</math> | ||
− | ==Solution 1(Telescoping)== | + | ==Solution 1 (Telescoping)== |
We rewrite: <cmath>\frac{1}{2}\cdot\left(\frac{3\cdot2}{2\cdot3}\right)\left(\frac{4\cdot3}{3\cdot4}\right)\cdots\left(\frac{99\cdot98}{98\cdot99}\right)\cdot\frac{100}{99}</cmath> | We rewrite: <cmath>\frac{1}{2}\cdot\left(\frac{3\cdot2}{2\cdot3}\right)\left(\frac{4\cdot3}{3\cdot4}\right)\cdots\left(\frac{99\cdot98}{98\cdot99}\right)\cdot\frac{100}{99}</cmath> | ||
Line 19: | Line 19: | ||
Rewriting the numerator and the denominator, we get <math>\frac{\frac{100! \cdot 98!}{2}}{\left(99!\right)^2}</math>. We can simplify by canceling 99! on both sides, leaving us with: <math>\frac{100 \cdot 98!}{2 \cdot 99!}</math> We rewrite <math>99!</math> as <math>99 \cdot 98!</math> and cancel <math>98!</math>, which gets <math>\boxed{(B)\frac{50}{99}}</math>. | Rewriting the numerator and the denominator, we get <math>\frac{\frac{100! \cdot 98!}{2}}{\left(99!\right)^2}</math>. We can simplify by canceling 99! on both sides, leaving us with: <math>\frac{100 \cdot 98!}{2 \cdot 99!}</math> We rewrite <math>99!</math> as <math>99 \cdot 98!</math> and cancel <math>98!</math>, which gets <math>\boxed{(B)\frac{50}{99}}</math>. | ||
− | ==Video Solution== | + | ==Video Solution 1== |
https://www.youtube.com/watch?v=yPQmvyVyvaM | https://www.youtube.com/watch?v=yPQmvyVyvaM | ||
Line 29: | Line 29: | ||
~ MathEx | ~ MathEx | ||
− | == Video Solution == | + | == Video Solution 2== |
Solution detailing how to solve the problem: | Solution detailing how to solve the problem: | ||
Line 35: | Line 35: | ||
https://www.youtube.com/watch?v=VezsRMJvGPs&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=18 | https://www.youtube.com/watch?v=VezsRMJvGPs&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=18 | ||
− | ==Video Solution== | + | ==Video Solution 3== |
https://youtu.be/e1EJNZu-jxM | https://youtu.be/e1EJNZu-jxM | ||
Revision as of 01:35, 20 December 2022
Contents
Problem
What is the value of the product
Solution 1 (Telescoping)
We rewrite:
The middle terms cancel, leaving us with
Solution 2
If you calculate the first few values of the equation, all of the values tend to close to , but are not equal to it. The answer closest to but not equal to it is .
Solution 3
Rewriting the numerator and the denominator, we get . We can simplify by canceling 99! on both sides, leaving us with: We rewrite as and cancel , which gets .
Video Solution 1
https://www.youtube.com/watch?v=yPQmvyVyvaM
Associated video
https://www.youtube.com/watch?v=ffHl1dAjs7g&list=PLLCzevlMcsWNBsdpItBT4r7Pa8cZb6Viu&index=1
~ MathEx
Video Solution 2
Solution detailing how to solve the problem:
https://www.youtube.com/watch?v=VezsRMJvGPs&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=18
Video Solution 3
~savannahsolver
See Also
2019 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.