Difference between revisions of "2019 AMC 8 Problems/Problem 17"

m
(Solution 3)
Line 18: Line 18:
 
==Solution 3==
 
==Solution 3==
 
Rewriting the numerator and the denominator, we get <math>\frac{\frac{100! \cdot 98!}{2}}{\left(99!\right)^2}</math>. We can simplify by canceling 99! on both sides, leaving us with: <math>\frac{100 \cdot 98!}{2 \cdot 99!}</math> We rewrite <math>99!</math> as <math>99 \cdot 98!</math> and cancel <math>98!</math>, which gets <math>\boxed{(B)\frac{50}{99}}</math>.
 
Rewriting the numerator and the denominator, we get <math>\frac{\frac{100! \cdot 98!}{2}}{\left(99!\right)^2}</math>. We can simplify by canceling 99! on both sides, leaving us with: <math>\frac{100 \cdot 98!}{2 \cdot 99!}</math> We rewrite <math>99!</math> as <math>99 \cdot 98!</math> and cancel <math>98!</math>, which gets <math>\boxed{(B)\frac{50}{99}}</math>.
 +
 +
==Solution 4==
 +
Obviously all of the terms are less than one by difference of squares, so we eliminate options <math>(D)</math> and <math>(E)</math>. <math>(C)</math> is too close to one to be possible, and as stated in Solution 2 it gets close to but never actually becomes <math>1/2</math>. Therefore, by process of elimination we get that the answer is <math>B</math>.
  
 
==Video Solution 1==
 
==Video Solution 1==

Revision as of 16:20, 20 December 2022

Problem

What is the value of the product

\[\left(\frac{1\cdot3}{2\cdot2}\right)\left(\frac{2\cdot4}{3\cdot3}\right)\left(\frac{3\cdot5}{4\cdot4}\right)\cdots\left(\frac{97\cdot99}{98\cdot98}\right)\left(\frac{98\cdot100}{99\cdot99}\right)?\]

$\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{50}{99}\qquad\textbf{(C) }\frac{9800}{9801}\qquad\textbf{(D) }\frac{100}{99}\qquad\textbf{(E) }50$

Solution 1 (Telescoping)

We rewrite: \[\frac{1}{2}\cdot\left(\frac{3\cdot2}{2\cdot3}\right)\left(\frac{4\cdot3}{3\cdot4}\right)\cdots\left(\frac{99\cdot98}{98\cdot99}\right)\cdot\frac{100}{99}\]

The middle terms cancel, leaving us with

\[\left(\frac{1\cdot100}{2\cdot99}\right)= \boxed{\textbf{(B)}\frac{50}{99}}\]

Solution 2

If you calculate the first few values of the equation, all of the values tend to close to $\frac{1}{2}$, but are not equal to it. The answer closest to $\frac{1}{2}$ but not equal to it is $\boxed{\textbf{(B)}\frac{50}{99}}$.

Solution 3

Rewriting the numerator and the denominator, we get $\frac{\frac{100! \cdot 98!}{2}}{\left(99!\right)^2}$. We can simplify by canceling 99! on both sides, leaving us with: $\frac{100 \cdot 98!}{2 \cdot 99!}$ We rewrite $99!$ as $99 \cdot 98!$ and cancel $98!$, which gets $\boxed{(B)\frac{50}{99}}$.

Solution 4

Obviously all of the terms are less than one by difference of squares, so we eliminate options $(D)$ and $(E)$. $(C)$ is too close to one to be possible, and as stated in Solution 2 it gets close to but never actually becomes $1/2$. Therefore, by process of elimination we get that the answer is $B$.

Video Solution 1

https://www.youtube.com/watch?v=yPQmvyVyvaM

Associated video

https://www.youtube.com/watch?v=ffHl1dAjs7g&list=PLLCzevlMcsWNBsdpItBT4r7Pa8cZb6Viu&index=1

~ MathEx

Video Solution 2

Solution detailing how to solve the problem:

https://www.youtube.com/watch?v=VezsRMJvGPs&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=18

Video Solution 3

https://youtu.be/e1EJNZu-jxM

~savannahsolver

See Also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png