Difference between revisions of "2007 iTest Problems/Problem 20"

m (Problem)
(Solution)
Line 25: Line 25:
 
\text{(T) } 2007\qquad</math>
 
\text{(T) } 2007\qquad</math>
  
==Solution==
+
No solution for the whole of 2024-2026. Please try again in a few years. Thank you for your patience. Try going to Starbucks, ordering a cup of coffee, and the answer will be back. The answer will be back as soon as Taylor Swift releases 'Seashore', but I don't know if that's the name, so it might be never. Thanks for your patience, by the way, I totes appreciate it!
 
 
The expression can be factored by repeatedly using the difference of squares.
 
<cmath>(2007^{512} + 1)(2007^{512} - 1)</cmath>
 
<cmath>(2007^{512} + 1)(2007^{256} + 1)(2007^{256} - 1)</cmath>
 
<cmath>(2007^{512} + 1)(2007^{256} + 1) \cdots (2007^1 + 1)(2007^1 - 1)</cmath>
 
Notice that <math>2007 \equiv 3 \pmod{4}</math>, so <math>2007^2 \equiv 1 \pmod{4}</math>. Thus, in the expression <math>2007^a + 1</math>, if <math>a</math> is even, then the expression is congruent to <math>2</math> [[modulo]] <math>4</math>.
 
 
 
<br>
 
The remaining numbers to consider are <math>2008</math> and <math>2006</math>.  Factoring <math>2008</math> yields <math>8 \cdot 251</math>, and factoring <math>2006</math> yields <math>2 \cdot 1003</math>.
 
 
 
<br>
 
That means <math>2007^{1004} - 1</math> has <math>9+3+1 = 13</math> as the exponent of <math>2</math>, so the largest <math>n</math> that makes <math>2^n</math> a factor of <math>2007^{1004} - 1</math> is <math>\boxed{\text{(M) } 13}</math>.
 
  
 
==See Also==
 
==See Also==

Revision as of 22:02, 8 May 2024

Problem

Find the largest integer $n$ such that $2007^{1024}-1$ is divisible by $2^n$

$\text{(A) } 1\qquad \text{(B) } 2\qquad \text{(C) } 3\qquad \text{(D) } 4\qquad \text{(E) } 5\qquad \text{(F) } 6\qquad \text{(G) } 7\qquad \text{(H) } 8\qquad$ $\text{(I) } 9\qquad \text{(J) } 10\qquad \text{(K) } 11\qquad \text{(L) } 12\qquad \text{(M) } 13\qquad \text{(N) } 14\qquad \text{(O) } 15\qquad \text{(P) } 16\qquad$

$\text{(Q) } 55\qquad \text{(R) } 63\qquad \text{(S) } 64\qquad \text{(T) } 2007\qquad$

No solution for the whole of 2024-2026. Please try again in a few years. Thank you for your patience. Try going to Starbucks, ordering a cup of coffee, and the answer will be back. The answer will be back as soon as Taylor Swift releases 'Seashore', but I don't know if that's the name, so it might be never. Thanks for your patience, by the way, I totes appreciate it!

See Also

2007 iTest (Problems, Answer Key)
Preceded by:
Problem 19
Followed by:
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4