Difference between revisions of "AoPS Wiki:Article of the Day/Archive"
(add to archive) |
(add old one) |
||
Line 1: | Line 1: | ||
+ | ==12/15/07== | ||
+ | <blockquote style="display:table;background:#eeeeee;padding:10px;" class="toccolours"> | ||
+ | ===Cauchy-Schwarz inequality=== | ||
+ | The Cauchy-Schwarz Inequality (which is known by other names, including Cauchy's Inequality, Schwarz's Inequality, and the Cauchy-Bunyakovsky-Schwarz Inequality) is a well-known inequality with many elegant applications... [[Cauchy-Schwarz inequality|[more]]] | ||
+ | </blockquote> | ||
==12/14/07== | ==12/14/07== | ||
<blockquote style="display:table;background:#eeeeee;padding:10px;" class="toccolours"> | <blockquote style="display:table;background:#eeeeee;padding:10px;" class="toccolours"> |
Revision as of 13:24, 16 December 2007
Contents
12/15/07
Cauchy-Schwarz inequality
The Cauchy-Schwarz Inequality (which is known by other names, including Cauchy's Inequality, Schwarz's Inequality, and the Cauchy-Bunyakovsky-Schwarz Inequality) is a well-known inequality with many elegant applications... [more]
12/14/07
Rearrangement inequality
The Rearrangement Inequality states that, if is a permutation of a finite set (in fact, multiset) of real numbers and is a permutation of another finite set of real numbers, the quantity is maximized when and are similarly sorted (that is, if is greater than or equal to exactly of the other members of , then is also greater than or equal to exactly of the other members of ). Conversely, is minimized when and are oppositely sorted (that is, if is less than or equal
12/13/07
There was no AotD for December thirteenth.
12/12/07
Trigonometric identities
Trigonometric identities are used to manipulate trigonometry equations in certain ways. Here is a list of them:
The six basic trigonometric functions can be defined using [more]
12/11/07
MATHCOUNTS
MATHCOUNTS is a large national mathematics competition and mathematics coaching program that has served millions of middle school students since 1984. Sponsored by the CNA Foundation, National Society of Professional Engineers, the National Council of Teachers of Mathematics, and others, the focus of MATHCOUNTS is on mathematical problem solving. Students are eligible for up to three years, but cannot compete beyond their eighth grade year.
MATHCOUNTS curriculum... [more]
12/10/07
Polynomial
A polynomial is a function in one or more variables that consists of a sum of variables raised to nonnegative, integral powers and multiplied by coefficients (usually integral, rational, real or complex, but in abstract algebra often coming from an arbitrary field).
For example, these are... [more]
12/9/07
Pascal's identity
Pascal's identity is a common and useful theorem in the realm of combinatorics dealing with combinations (also known as binomial coefficients), and is often used to reduce large, complicated combinations.
Pascal's identity is also known as Pascal's rule, Pascal's formula, and occasionally... [more]
12/8/07
Canada/USA MathCamp
This article was also a AoPSWiki word of the week
The Canada/USA Mathcamp is an intensive 5-week-long summer program for mathematically talented high school students, designed to inspire and motivate mathematically talented high school students by exposing them to the beauty and variety of mathematics, to impart valuable knowledge and skills for the pursuit of mathematics in high school, university, and beyond, and to provide a supportive and fun environment for interaction among students who love mathematics.
The environment of Mathcamp tends to be relaxed in terms of rules; in fact it officially only has four rules (generally involving common sense and respect). Originally it had been stricter, though by 1997 most of the mentors found the structure too... [more]
12/7/07
Prime number
A prime number (or simply prime) is a positive integer whose only positive divisors are 1 and itself. Note that is usually defined as being neither prime nor composite because it is its only factor among the natural numbers. The Sieve of Eratosthenes is a relatively quick method for... [more]
12/6/07
Calculus
The discovery of the branch of mathematics known as calculus was motivated by two classical problems: how to find the slope of the tangent line to a curve at a point and how to find the area bounded by a curve. What is surprising is that these two problems are fundamentally connected and, together with the notion of limits, can be used to analyse instantaneous rates of change, accumulations of change, volumes of irregular solids, and... [more]
12/5/07
Pi
Pi is an irrational number (in fact, transcendental number, as proved by Lindeman in 1882) denoted by the greek letter .
Pi is the ratio of the circumference (perimeter) of a given circle to its diameter. It is approximately equal to 3.141592653. The number pi is one of the most important constants in all of mathematics and appears in some of the most surprising places, such as in the sum . Some common... [more]
12/4/07
Isaac Newton
Isaac Newton (1643 – 1727) was a famous British physicist and mathematician. His most famous work in mathematics was the compilation of calculus.
Isaac Newton was born on January 4, 1643 in Lincolnshire, England. Newton was born very shortly after the death of his father. He did very well... [more]
12/3/07
Logarithm
This article was also a AoPSWiki word of the week
Logarithms and exponents are very closely related. In fact, they are inverse functions. This means that logarithms can be used to reverse the result of exponentiation and vice versa, just as addition can be used to reverse the result of subtraction. Thus, if we have , then taking the logarithm with base on both sides will give us .
We would read this as "the logarithm of b, base a, is x". For example, we know that . To express the same fact... [more]
12/2/07
American Invitational Mathematics Examination
The American Invitational Mathematics Examination (AIME) is the second exam in the series of exams used to challenge bright students on the path toward choosing the team that represents the United States at the International Mathematics Olympiad (IMO). While most AIME participants are high school students, some bright middle school students also qualify each year.
High scoring AIME students are invited to take the prestigious United States of America Mathematics Olympiad (USAMO).
The AIME is administered by... [more]
12/1/07
Inequality
The subject of mathematical inequalities is tied closely with optimization methods. While most of the subject of inequalities is often left out of the ordinary educational track, they are common in mathematics Olympiads.
Inequalities are arguably a branch of... [more]
11/30/07
Asymptote (geometry)
This article was also a AoPSWiki word of the week
An asymptote is a line or curve that a certain function approaches.
Linear asymptotes can be of three different kinds: horizontal, vertical or slanted (oblique).
The vertical asymptote can be found by finding values of that make the function undefined, generally because it results in a division by zero, which is undefined... [more]
11/27/07
Complex number
The complex numbers arise when we try to solve equations such as .
We know (from the trivial inequality) that the square of a real number cannot be negative, so this equation has no solutions in the real numbers. However, it is possible to define a number, , such that . If we add this new number to the reals, we will have solutions to . It turns out that in the system that results... [more]
11/25/07
Set
The notion of a set is one of the fundamental notions in mathematics that is difficult to precisely define. Of course, we have plenty of synonyms for the word "set," like collection, ensemble, group, etc., but those names really do not define the meaning of the word set; all they can do is replace it in various sentences. So, instead of defining what sets are, one has to define what can be done with them or, in other words, what axioms the sets satisfy. These axioms are chosen to agree with our intuitive concept of a set, on one hand, and to allow various, sometimes quite sophisticated, mathematical constructions on the other hand. For the full collection...[more]