Difference between revisions of "2007 iTest Problems/Problem 6"

(New page: ==Problem== Find the units digit of the sum <cmath>\sum_{i=1}^{100}(i!)^{2}</cmath> <math>\mathrm{(A)}\,0\quad\mathrm{(B)}\,1\quad\mathrm{(C)}\,3\quad\mathrm{(D)}\,5\quad\mathrm{(E)}\,7\...)
 
Line 18: Line 18:
  
 
<math>1+4+6+6=17</math>, which has a units digit of 7 <math>\Rightarrow \mathrm{(E)}</math>
 
<math>1+4+6+6=17</math>, which has a units digit of 7 <math>\Rightarrow \mathrm{(E)}</math>
 +
 +
==See Also==
 +
{{iTest box|year=2007|num-b=5|num-a=7}}

Revision as of 10:05, 16 December 2007

Problem

Find the units digit of the sum

\[\sum_{i=1}^{100}(i!)^{2}\]

$\mathrm{(A)}\,0\quad\mathrm{(B)}\,1\quad\mathrm{(C)}\,3\quad\mathrm{(D)}\,5\quad\mathrm{(E)}\,7\quad\mathrm{(F)}\,9$

Solution

If i is less than 5, then $i!$ has a positive units digit, if $i\geq 5$, then $i!$ has a units digit of 0, as does $(i!)^2$. So we only need to worry about i=1-4.

$(1!)^2=1$

$(2!)^2=4$

$(3!)^2=36$

$(4!)^2=576$

$1+4+6+6=17$, which has a units digit of 7 $\Rightarrow \mathrm{(E)}$

See Also

2007 iTest (Problems, Answer Key)
Preceded by:
Problem 5
Followed by:
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4