Difference between revisions of "2000 AIME II Problems/Problem 1"
(→Solution) |
Danielguo94 (talk | contribs) (→Solution) |
||
Line 7: | Line 7: | ||
<math>\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}</math> | <math>\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}</math> | ||
− | <math>\frac{\log_4{16}}{\log_4{2000^6}}+\frac{\log_5{125}}{\log_5{2000^6}}</math> | + | <math>=\frac{\log_4{16}}{\log_4{2000^6}}+\frac{\log_5{125}}{\log_5{2000^6}}</math> |
− | <math>\frac{\log{16}}{\log{2000^6}}+\frac{\log{125}}{\log{2000^6}}</math> | + | <math>=\frac{\log{16}}{\log{2000^6}}+\frac{\log{125}}{\log{2000^6}}</math> |
− | <math>\frac{\log{2000}}{\log{2000^6}}</math> | + | <math>=\frac{\log{2000}}{\log{2000^6}}</math> |
− | <math>\frac{\log{2000}}{6\log{2000}}</math> | + | <math>=\frac{\log{2000}}{6\log{2000}}</math> |
− | <math>\frac{1}{6}</math> | + | <math>=\frac{1}{6}</math> |
− | <math>1+6=\boxed{007}</math> | + | <math>=1+6=\boxed{007}</math> |
{{AIME box|year=2000|n=II|before=First Question|num-a=2}} | {{AIME box|year=2000|n=II|before=First Question|num-a=2}} |