Difference between revisions of "2000 AIME II Problems/Problem 1"

(Solution)
(Solution)
Line 7: Line 7:
 
<math>\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}</math>
 
<math>\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}</math>
  
<math>\frac{\log_4{16}}{\log_4{2000^6}}+\frac{\log_5{125}}{\log_5{2000^6}}</math>
+
<math>=\frac{\log_4{16}}{\log_4{2000^6}}+\frac{\log_5{125}}{\log_5{2000^6}}</math>
  
<math>\frac{\log{16}}{\log{2000^6}}+\frac{\log{125}}{\log{2000^6}}</math>
+
<math>=\frac{\log{16}}{\log{2000^6}}+\frac{\log{125}}{\log{2000^6}}</math>
  
<math>\frac{\log{2000}}{\log{2000^6}}</math>
+
<math>=\frac{\log{2000}}{\log{2000^6}}</math>
  
<math>\frac{\log{2000}}{6\log{2000}}</math>
+
<math>=\frac{\log{2000}}{6\log{2000}}</math>
  
<math>\frac{1}{6}</math>
+
<math>=\frac{1}{6}</math>
  
<math>1+6=\boxed{007}</math>
+
<math>=1+6=\boxed{007}</math>
  
 
{{AIME box|year=2000|n=II|before=First Question|num-a=2}}
 
{{AIME box|year=2000|n=II|before=First Question|num-a=2}}

Revision as of 20:32, 25 March 2011

Problem

The number

$\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}$

can be written as $\frac mn$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

$\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}$

$=\frac{\log_4{16}}{\log_4{2000^6}}+\frac{\log_5{125}}{\log_5{2000^6}}$

$=\frac{\log{16}}{\log{2000^6}}+\frac{\log{125}}{\log{2000^6}}$

$=\frac{\log{2000}}{\log{2000^6}}$

$=\frac{\log{2000}}{6\log{2000}}$

$=\frac{1}{6}$

$=1+6=\boxed{007}$

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions