Difference between revisions of "2010 AMC 12A Problems/Problem 6"
(Created page with '== Problem 6 == A <math>\texti{palindrome}</math>, such as 83438, is a number that remains the same when its digits are reversed. The numbers <math>x</math> and <math>x+32</math>…') |
m (Semi-automated contest formatting - script by azjps) |
||
Line 1: | Line 1: | ||
− | == Problem | + | == Problem == |
A <math>\texti{palindrome}</math>, such as 83438, is a number that remains the same when its digits are reversed. The numbers <math>x</math> and <math>x+32</math> are three-digit and four-digit palindromes, respectively. What is the sum of the digits of <math>x</math>? | A <math>\texti{palindrome}</math>, such as 83438, is a number that remains the same when its digits are reversed. The numbers <math>x</math> and <math>x+32</math> are three-digit and four-digit palindromes, respectively. What is the sum of the digits of <math>x</math>? | ||
Line 8: | Line 8: | ||
It follows that <math>x</math> is <math>969</math>, so the sum of the digits is <math>\boxed{\textbf{(E)}\ 24}</math>. | It follows that <math>x</math> is <math>969</math>, so the sum of the digits is <math>\boxed{\textbf{(E)}\ 24}</math>. | ||
+ | |||
+ | == See also == | ||
+ | {{AMC12 box|year=2010|num-b=5|num-a=7|ab=A}} | ||
+ | |||
+ | [[Category:Introductory Algebra Problems]] |
Revision as of 22:00, 25 February 2010
Problem
A $\texti{palindrome}$ (Error compiling LaTeX. Unknown error_msg), such as 83438, is a number that remains the same when its digits are reversed. The numbers and are three-digit and four-digit palindromes, respectively. What is the sum of the digits of ?
Solution
is at most , so is at most . The minimum value of is . However, the only palindrome between and is , which means that must be .
It follows that is , so the sum of the digits is .
See also
2010 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 5 |
Followed by Problem 7 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |