Difference between revisions of "1995 AIME Problems/Problem 7"
(→Solution 2) |
(→Solution 2) |
||
Line 10: | Line 10: | ||
==Solution 2== | ==Solution 2== | ||
Let <math>(1 - \sin t)(1 - \cos t) = x</math>. Multiplying <math>x</math> with the given equation, <math>\frac{5x}{4} = (1 - \sin^2 t)(1 - \cos^2 t) = \sin^2 t \cos ^2 t</math>, and <math>\frac{\sqrt{5x}}{2} = \sin t \cos t</math>. Simplifying and rearranging the given equation, <math>\sin t + \cos t = \frac{5}{4} - (\sin^2 t + \cos^2 t) - \sin t \cos t = \frac{1}{4} - \frac{\sqrt{5x}}{2}</math>. Notice that <math>(1 + \sin t)(1 + \cos t) - 2(\sin t + \cos t) = x</math>, and substituting, <math>x = \frac{5}{4} - 2( \frac{1}{4} - \frac{\sqrt{5x}}{2}) = \frac{3}{4} + \sqrt{5x}</math>. Rearranging and squaring, <math>5x = x^2 - \frac{3}{2} x + \frac{9}{16}</math>, so <math>x^2 - \frac{13}{2} x + \frac{9}{16} = 0</math>, and <math>x = \frac{13}{4} \pm \sqrt{10}</math>, but clearly, <math>0 \leq x < 4</math>. Therefore, <math>x = \frac{13}{4} - \sqrt{10}</math>, and the answer is <math> 13 + 4 + 10 = \boxed{027}</math>. | Let <math>(1 - \sin t)(1 - \cos t) = x</math>. Multiplying <math>x</math> with the given equation, <math>\frac{5x}{4} = (1 - \sin^2 t)(1 - \cos^2 t) = \sin^2 t \cos ^2 t</math>, and <math>\frac{\sqrt{5x}}{2} = \sin t \cos t</math>. Simplifying and rearranging the given equation, <math>\sin t + \cos t = \frac{5}{4} - (\sin^2 t + \cos^2 t) - \sin t \cos t = \frac{1}{4} - \frac{\sqrt{5x}}{2}</math>. Notice that <math>(1 + \sin t)(1 + \cos t) - 2(\sin t + \cos t) = x</math>, and substituting, <math>x = \frac{5}{4} - 2( \frac{1}{4} - \frac{\sqrt{5x}}{2}) = \frac{3}{4} + \sqrt{5x}</math>. Rearranging and squaring, <math>5x = x^2 - \frac{3}{2} x + \frac{9}{16}</math>, so <math>x^2 - \frac{13}{2} x + \frac{9}{16} = 0</math>, and <math>x = \frac{13}{4} \pm \sqrt{10}</math>, but clearly, <math>0 \leq x < 4</math>. Therefore, <math>x = \frac{13}{4} - \sqrt{10}</math>, and the answer is <math> 13 + 4 + 10 = \boxed{027}</math>. | ||
+ | |||
+ | SOLUTION 3 (-synergy) | ||
+ | |||
+ | We have <math>1+\sinx\cosx+\sinx+\cosx = \frac{5}{4}</math> | ||
+ | |||
+ | We want to find <math>1+\sinx\cosx-\sinx-\cosx</math> | ||
+ | |||
+ | If we find \sinx+\cosx, we will be done with the problem. | ||
+ | |||
+ | Let <math>y = \sinx+\cosx</math> | ||
+ | |||
+ | Squaring, we have <math>y^2 = \sin^2 x + \cos^2 x + 2\sinx\cosx = 1 + 2\sinx\cosx</math> | ||
+ | |||
+ | From this we have <math>\sinx\cosx = y</math> and <math>\sinx + \cos x = \frac{y^2-1}{2}</math> | ||
+ | |||
+ | Substituting this into the first equation we have <math>2y^2+4x-3=0</math>, <math>y = \frac {-2 \pm \sqrt{10}}{2}</math> | ||
+ | |||
+ | <math>\frac{5}{4} - 2(\frac{-2+\sqrt{10}}{2}) = \frac{13}{4}-\sqrt{10} \rightarrow 13+10+4=\boxed{027}</math> | ||
== See also == | == See also == |
Revision as of 11:50, 16 June 2018
Contents
Problem
Given that and
where and are positive integers with and relatively prime, find
Solution
From the givens, , and adding to both sides gives . Completing the square on the left in the variable gives . Since , we have . Subtracting twice this from our original equation gives , so the answer is .
Solution 2
Let . Multiplying with the given equation, , and . Simplifying and rearranging the given equation, . Notice that , and substituting, . Rearranging and squaring, , so , and , but clearly, . Therefore, , and the answer is .
SOLUTION 3 (-synergy)
We have $1+\sinx\cosx+\sinx+\cosx = \frac{5}{4}$ (Error compiling LaTeX. Unknown error_msg)
We want to find $1+\sinx\cosx-\sinx-\cosx$ (Error compiling LaTeX. Unknown error_msg)
If we find \sinx+\cosx, we will be done with the problem.
Let $y = \sinx+\cosx$ (Error compiling LaTeX. Unknown error_msg)
Squaring, we have $y^2 = \sin^2 x + \cos^2 x + 2\sinx\cosx = 1 + 2\sinx\cosx$ (Error compiling LaTeX. Unknown error_msg)
From this we have $\sinx\cosx = y$ (Error compiling LaTeX. Unknown error_msg) and $\sinx + \cos x = \frac{y^2-1}{2}$ (Error compiling LaTeX. Unknown error_msg)
Substituting this into the first equation we have ,
See also
1995 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.