Difference between revisions of "2007 iTest Problems/Problem 59"
(Created page with "== Problem == Let <math>T=\text{TNFTPP}</math>. Fermi and Feynman play the game <math>\textit{Probabicloneme}</math> in which Fermi wins with probability <math>a/b</math>, where ...") |
|||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
+ | |||
+ | ==See Also== | ||
+ | {{iTest box|year=2007|num-b=58|num-a=60}} | ||
+ | |||
+ | [[Category:Intermediate Probability Problems]] |
Revision as of 19:02, 2 January 2020
Problem
Let . Fermi and Feynman play the game in which Fermi wins with probability , where and are relatively prime positive integers such that . The rest of the time Feynman wins (there are no ties or incomplete games). It takes a negligible amount of time for the two geniuses to play so they play many many times. Assuming they can play infinitely many games (eh, they're in Physicist Heaven, we can bend the rules), the probability that they are ever tied in total wins after they start (they have the same positive win totals) is . Find the value of .
Solution
See Also
2007 iTest (Problems, Answer Key) | ||
Preceded by: Problem 58 |
Followed by: Problem 60 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 |