Difference between revisions of "2007 iTest Problems/Problem 23"
m (Created page with "== Problem == Find the product of the non-real roots of the equation <cmath>(x^2-3)^2+5(x^2-3)+6=0</cmath> <math>\text{(A) } 0\quad \text{(B) } 1\quad \text{(C) } -1\quad \text...") |
Rockmanex3 (talk | contribs) (Solution to Problem 23) |
||
Line 2: | Line 2: | ||
Find the product of the non-real roots of the equation | Find the product of the non-real roots of the equation | ||
− | <cmath>(x^2- | + | <cmath>(x^2-3x)^2+5(x^2-3x)+6=0</cmath> |
<math>\text{(A) } 0\quad | <math>\text{(A) } 0\quad | ||
Line 12: | Line 12: | ||
\text{(G) } -3\quad | \text{(G) } -3\quad | ||
\text{(H) } 4\quad | \text{(H) } 4\quad | ||
− | \text{(I) } -4\quad | + | \text{(I) } -4\quad</math> |
<math>\text{(J) } 5\quad | <math>\text{(J) } 5\quad | ||
Line 19: | Line 19: | ||
\text{(M) } -6\quad | \text{(M) } -6\quad | ||
\text{(N) } 3+2i\quad | \text{(N) } 3+2i\quad | ||
− | \text{(O) } 3-2i\quad | + | \text{(O) } 3-2i\quad</math> |
<math>\text{(P) } \frac{-3+i\sqrt{3}}{2}\quad | <math>\text{(P) } \frac{-3+i\sqrt{3}}{2}\quad | ||
Line 26: | Line 26: | ||
\text{(S) } 12\quad | \text{(S) } 12\quad | ||
\text{(T) } -12\quad | \text{(T) } -12\quad | ||
− | \text{(U) } 42\quad | + | \text{(U) } 42\quad</math> |
<math>\text{(V) Ying} \quad | <math>\text{(V) Ying} \quad | ||
Line 32: | Line 32: | ||
== Solution == | == Solution == | ||
+ | Let <math>a = x^2 - 3x</math>. Substituting that in results in | ||
+ | <cmath>a^2 + 5a + 6</cmath> | ||
+ | Factoring that (and substituting back) leads to | ||
+ | <cmath>(a+2)(a+3)</cmath> | ||
+ | <cmath>(x^2-3x+2)(x^2-3x+3)</cmath> | ||
+ | The first part is factorable into <math>(x-2)(x-1)</math>. The second part isn’t — and the discriminant is <math>3^2 - 4 \cdot 3 = -3</math>. With the imaginary factors found, by [[Vieta's Formulas]], the product of the non-real roots is <math>\boxed{\textbf{(F) }3}</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{iTest box|year=2007|num-b=22|num-a=24}} | ||
+ | |||
+ | [[Category:Introductory Algebra Problems]] |
Revision as of 03:23, 18 June 2018
Problem
Find the product of the non-real roots of the equation
Solution
Let . Substituting that in results in Factoring that (and substituting back) leads to The first part is factorable into . The second part isn’t — and the discriminant is . With the imaginary factors found, by Vieta's Formulas, the product of the non-real roots is .
See Also
2007 iTest (Problems, Answer Key) | ||
Preceded by: Problem 22 |
Followed by: Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 |