Difference between revisions of "2018 AMC 10B Problems/Problem 24"

(Solution)
(Solution)
Line 11: Line 11:
  
 
<asy>
 
<asy>
 
import graph;
 
size(9cm);
 
pen dps = fontsize(10); defaultpen(dps);
 
pair D = (0,0);
 
pair F = (1/2,0);
 
pair C = (1,0);
 
pair G = (0,1);
 
pair E = (1,1);
 
pair A = (0,2);
 
pair B = (1,2);
 
pair H = (1/2,1);
 
  
 
</asy>
 
</asy>

Revision as of 16:26, 16 February 2018

Problem

Let $ABCDEF$ be a regular hexagon with side length $1$. Denote $X$, $Y$, and $Z$ the midpoints of sides $\overline {AB}$, $\overline{CD}$, and $\overline{EF}$, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of $\triangle ACE$ and $\triangle XYZ$?

$\textbf{(A)} \frac {3}{8}\sqrt{3} \qquad \textbf{(B)} \frac {7}{16}\sqrt{3} \qquad \textbf{(C)} \frac {15}{32}\sqrt{3} \qquad  \textbf{(D)} \frac {1}{2}\sqrt{3} \qquad \textbf{(E)} \frac {9}{16}\sqrt{3} \qquad$


Answer: $\frac {15}{32}\sqrt{3}$

Solution

[asy]  [/asy]

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png