Difference between revisions of "2018 AMC 10B Problems/Problem 24"
(→Solution) |
(→Solution) |
||
Line 12: | Line 12: | ||
<asy> | <asy> | ||
pair A,B,C,D,E,F,W,X,Y,Z; | pair A,B,C,D,E,F,W,X,Y,Z; | ||
− | A=(0, | + | A=(0,sqrt(3)); |
− | B=(1, | + | B=(1,sqrt(3)); |
C=(3/2,sqrt(3)/2); | C=(3/2,sqrt(3)/2); | ||
− | D=(1, | + | D=(1,0); |
− | E=(0, | + | E=(0,0); |
F=(-1/2,sqrt(3)/2); | F=(-1/2,sqrt(3)/2); | ||
Revision as of 16:31, 16 February 2018
Problem
Let be a regular hexagon with side length . Denote , , and the midpoints of sides , , and , respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of and ?
Answer:
Solution
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.